adaptive wavelet methods for parabolic pde constrained
play

Adaptive Wavelet Methods for Parabolic PDE-Constrained Control - PowerPoint PPT Presentation

Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems Angela Kunoth University of Cologne, Germany November 09, 2016 Angela Kunoth Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 1 Adaptive


  1. Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems Angela Kunoth University of Cologne, Germany November 09, 2016 Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 1

  2. Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems Angela Kunoth University of Cologne, Germany November 09, 2016 Main subjects: ◮ Control problem constrained by PDE ❀ system of coupled PDEs ◮ Variables: state, control, adjoint (or co-)state ◮ Efficient solution schemes based on adaptive wavelets ◮ Convergence and optimal complexity Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 1

  3. Optimization Problems: First Order Necessary Conditions Constrained minimization problem inf J ( y , u ) J : Y × U → R Y , U , Q Hilbert spaces ( y , u ) ∈Y×U K : Y × U → Q ′ subject to K ( y , u ) = 0 control u ∈ U , state y ∈ Y Assumption on K : for given u ∈ U , there exists unique state y ∈ Y Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 2

  4. Optimization Problems: First Order Necessary Conditions Constrained minimization problem inf J ( y , u ) J : Y × U → R Y , U , Q Hilbert spaces ( y , u ) ∈Y×U K : Y × U → Q ′ subject to K ( y , u ) = 0 control u ∈ U , state y ∈ Y Assumption on K : for given u ∈ U , there exists unique state y ∈ Y Solution approach: compute zeroes of first order Fr´ echet derivatives of Lagrangian functional L ( y , u , p ) := J ( y , u ) + �K ( y , u ) , p � Q′×Q L : Y × U × Q → R costate/adjoint p ∈ Q  L y ( y , u , p )   J y ( y , u ) + �K y ( y , u ) , p � Q′×Q  δ L ( y , u , p ) := L u ( y , u , p )  = 0 ⇐ ⇒ J u ( y , u ) + �K u ( y , u ) , p � Q′×Q  = 0     ❀   L p ( z , u , p ) K ( y , u ) Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 2

  5. Optimization Problems: First Order Necessary Conditions Constrained minimization problem inf J ( y , u ) J : Y × U → R Y , U , Q Hilbert spaces ( y , u ) ∈Y×U K : Y × U → Q ′ subject to K ( y , u ) = 0 control u ∈ U , state y ∈ Y Assumption on K : for given u ∈ U , there exists unique state y ∈ Y Solution approach: compute zeroes of first order Fr´ echet derivatives of Lagrangian functional L ( y , u , p ) := J ( y , u ) + �K ( y , u ) , p � Q′×Q L : Y × U × Q → R costate/adjoint p ∈ Q  L y ( y , u , p )   J y ( y , u ) + �K y ( y , u ) , p � Q′×Q  δ L ( y , u , p ) := L u ( y , u , p )  = 0 ⇐ ⇒ J u ( y , u ) + �K u ( y , u ) , p � Q′×Q  = 0     ❀   L p ( z , u , p ) K ( y , u ) Special case: J quadratic in y , u K linear in y , u = ⇒ necessary conditions for optimality are sufficient linear (Karush-Kuhn-Tucker (KKT) or saddle point) system ❀ K ∗     L yy L yu y � B ∗ � � ( y , u ) T � y A K ∗  = g L uy L uu u ⇐ ⇒ : = g ⇐ ⇒ : G q = g  u   B 0 p K y K u 0 p �C ∗ q , r � := � q , C r � A , B linear, continuous; A invertible on ker B ; im B = Q ′ = ⇒ G boundedly invertible Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 2

  6. Optimal Control Problem Constrained by a Parabolic PDE with Distributed Control Given y ∗ ( t , · ) f ω > 0 end time T > 0 initial condition y 0 � T � T 1 � y ( t , · ) − y ∗ ( t , · ) � 2 ω � u ( t , · ) � 2 minimize J ( y , u ) = Z dt + U dt 2 2 0 0 y ′ ( t ) + A ( t ) y ( t ) subject to = f ( t ) + u ( t ) a.e. t ∈ (0 , T ) =: I (PDE) y (0) = y 0 y ′ := ∂ ∂ t y y = y ( t , x ) state u = u ( t , x ) control U = Y ′ = H − 1 (Ω) control space Y = H 1 Z = Y = H 1 0 (Ω) state space 0 (Ω) observation space � A ( t ) : Y → Y ′ � A ( t ) v ( t , · ) , w ( t , · ) � := Ω ⊂ R d [ ∇ v ( t , x ) · ∇ w ( t , x ) + v ( t , x ) w ( t , x )] dx Ω A ( t ) 2nd order linear selfadjoint coercive & continuous operator on Y Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 3

  7. Optimal Control Problem Constrained by a Parabolic PDE with Distributed Control Given y ∗ ( t , · ) f ω > 0 end time T > 0 initial condition y 0 � T � T 1 � y ( t , · ) − y ∗ ( t , · ) � 2 ω � u ( t , · ) � 2 minimize J ( y , u ) = Z dt + U dt 2 2 0 0 y ′ ( t ) + A ( t ) y ( t ) subject to = f ( t ) + u ( t ) a.e. t ∈ (0 , T ) =: I (PDE) y (0) = y 0 y ′ := ∂ ∂ t y y = y ( t , x ) state u = u ( t , x ) control U = Y ′ = H − 1 (Ω) control space Y = H 1 Z = Y = H 1 0 (Ω) state space 0 (Ω) observation space � A ( t ) : Y → Y ′ � A ( t ) v ( t , · ) , w ( t , · ) � := Ω ⊂ R d [ ∇ v ( t , x ) · ∇ w ( t , x ) + v ( t , x ) w ( t , x )] dx Ω A ( t ) 2nd order linear selfadjoint coercive & continuous operator on Y PDE-constrained control problem requires repeated solution of PDE constraint ❀ y ′ ( t ) + A ( t ) y ( t ) = f ( t ) + u ( t ) y (0) = y 0 Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 3

  8. Necessary and Sufficient Conditions for Optimality Optimal control problem constrained by parabolic PDE System of parabolic PDEs coupled globally in time (and space) ❀ y ′ ( t ) + A ( t ) y ( t ) = f ( t ) + u ( t ) a.e. t ∈ I y (0) = y 0 ω ˜ R − 1 u ( t ) + p ( t ) = 0 a.e. t ∈ I − p ′ ( t ) + A ( t ) T p ( t ) ˜ = R ( y ∗ ( t ) − y ( t )) a.e. t ∈ I p ( T ) = 0 Riesz operator ˜ R defined by � v , ˜ Rw � Y × Y ′ := ( v , w ) Y for all v , w ∈ Y Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 4

  9. Necessary and Sufficient Conditions for Optimality Optimal control problem constrained by parabolic PDE System of parabolic PDEs coupled globally in time (and space) ❀ y ′ ( t ) + A ( t ) y ( t ) = f ( t ) + u ( t ) a.e. t ∈ I y (0) = y 0 ω ˜ R − 1 u ( t ) + p ( t ) = 0 a.e. t ∈ I − p ′ ( t ) + A ( t ) T p ( t ) ˜ = R ( y ∗ ( t ) − y ( t )) a.e. t ∈ I p ( T ) = 0 Riesz operator ˜ R defined by � v , ˜ Rw � Y × Y ′ := ( v , w ) Y for all v , w ∈ Y Obstructions for numerical solution: • convential time discretizations: time-marching methods need storage of y ( t i ) , u ( t i ) , p ( t i ) for all discrete times 0 = t 0 , . . . , T = t N ❀ • in each time step: solve elliptic PDE large linear system of equations ❀ iterative solver need preconditioning in (conjugate) gradient method ❀ ❀ • singularities in data/domain: adaptive (FE) mesh(es) for y ( t i ) , u ( t i ) , p ( t i ) for all t i one mesh for all variables, refinement/coarsening ? [Oeltz ’06], [Meidner, Vexler ’07], . . . convergence ? complexity ?? Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 4

  10. Necessary and Sufficient Conditions for Optimality Optimal control problem constrained by parabolic PDE System of parabolic PDEs coupled globally in time (and space) ❀ y ′ ( t ) + A ( t ) y ( t ) = f ( t ) + u ( t ) a.e. t ∈ I y (0) = y 0 ω ˜ R − 1 u ( t ) + p ( t ) = 0 a.e. t ∈ I − p ′ ( t ) + A ( t ) T p ( t ) ˜ = R ( y ∗ ( t ) − y ( t )) a.e. t ∈ I p ( T ) = 0 Riesz operator ˜ R defined by � v , ˜ Rw � Y × Y ′ := ( v , w ) Y for all v , w ∈ Y Obstructions for numerical solution: • convential time discretizations: time-marching methods need storage of y ( t i ) , u ( t i ) , p ( t i ) for all discrete times 0 = t 0 , . . . , T = t N ❀ • in each time step: solve elliptic PDE large linear system of equations ❀ iterative solver need preconditioning in (conjugate) gradient method ❀ ❀ • singularities in data/domain: adaptive (FE) mesh(es) for y ( t i ) , u ( t i ) , p ( t i ) for all t i one mesh for all variables, refinement/coarsening ? [Oeltz ’06], [Meidner, Vexler ’07], . . . convergence ? complexity ?? Solution Ansatz here: full weak space-time form of parabolic PDE constraint Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 4

  11. Variational Space-Time Form for a Single Parabolic Evolution PDE [Ladyshenskaya et al 1967], [Wloka ’82], [Dautray, Lions ’92], [Schwab, Stevenson ’09], [Chegini, Stevenson ’11], [Stapel ’11] . . . y ′ ( t ) + A ( t ) y ( t ) = f ( t ) a.e. t ∈ I (PDE) y (0) = y 0 solution space: Lebesgue-Bochner space Y := ( L 2 ( I ) ⊗ Y ) ∩ ( H 1 ( I ) ⊗ Y ′ ) ֒ → C 0 ( I ) ⊗ L 2 (Ω) with norm � w � 2 Y := � w � 2 L 2( I ) ⊗ Y + � w ′ � 2 H 1( I ) ⊗ Y ′ � v � 2 Q := � v 1 � 2 L 2( I ) ⊗ Y + � v 2 � 2 test space: Q := ( L 2 ( I ) ⊗ Y ) × L 2 (Ω) with norm L 2(Ω) bilinear form b ( · , · ) : Y × Q → R � � w ′ ( t , · ) , v 1 ( t , · ) � + � A ( t ) w ( t , · ) , v 1 ( t , · ) � b ( w , ( v 1 , v 2 )) := � � dt + � w (0 , · ) , v 2 � =: � Bw , v � I right hand side � � f , v � := � f ( t , · ) , v 1 ( t , · ) � dt + � y 0 , v 2 � I ❀ given f ∈ Q ′ , find y ∈ Y : (PDE) By = f Existence and uniqueness of solution: Theorem � Bw � Q′ ∼ � w � Y for all w ∈ Q mapping property (MP) Formulations with 1/2 time derivatives on R : [Fontes ”99], [Larsson, Schwab ’15] Angela Kunoth — Adaptive Wavelet Methods for Parabolic PDE-Constrained Control Problems 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend