fundamental physics of elementary particles
play

(Fundamental) Physics of Elementary Particles Asymmetry of weak - PowerPoint PPT Presentation

(Fundamental) Physics of Elementary Particles Asymmetry of weak interactions; T e GIM mechanism & anomaly; Weak angle; Feynman rules Tristan Hbsch Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matemati


  1. (Fundamental) Physics of Elementary Particles Asymmetry of weak interactions; T e GIM mechanism & anomaly; Weak angle; Feynman rules Tristan Hübsch Department of Physics and Astronomy Howard University, Washington DC Prirodno-Matemati č ki Fakultet Univerzitet u Novom Sadu Wednesday, January 18, 12

  2. Fundamental Physics of Elementary Particles Program Le f -right asymmetry in weak interactions Dirac’s gamma matrices & the Cli ff ord algebra Dirac and Weyl spinors and equations T e GIM mechanism 1st order e ff ect 2nd order e ff ect T e U ( 1 ) A anomaly Two classical symmetries & their anomalies T e Adler-Bell-Jackiw (triangle) anomaly T e interactions of ma t er fermions with weak gauge bosons Cabbibo-Kobayashi-Maskawa mixing Feynman’s rules for weak interactions 2 Wednesday, January 18, 12

  3. Left-right asymmetry in weak interactions Dirac’s gamma matrices & the Clifford algebra Recall the non-relativistic Hamiltonian ⇣ ¯ h ∂ h ⌘ 2 1 ~ ∂ t = H = + V ( r , t ) ~ i ¯ r 2 m i Using the familiar classical ↔ quantum correspondence h h ∂ p = ¯ ~ ~ p $ ~ r , and E $ H = i ¯ ∂ t . i the Hamiltonian becomes p 2 E = ~ 2 m + V ( r , t ) , ~ which is the well known classical relationship between energy, linear momentum, mass and the potential. 3 Wednesday, January 18, 12

  4. Left-right asymmetry in weak interactions Dirac’s gamma matrices & the Clifford algebra Reverse-engineering then the relativistic relationship p 2 c 2 + m 2 c 4 = E 2 ~ we obtain c 2 ⇣ ¯ h ⌘ 2 h ∂ ⌘ 2 h + m 2 c 4 i ⇣ ~ Ψ ( r , t ) = Ψ ( r , t ) , ~ ~ r i ¯ h ⇣ ⌘ i ⇣ i r i ∂ t ⇣ mc ⌘ 2 i h ⌘ 2 i ⇣ mc h ⇤ + Ψ ( r , t ) = 0, ~ ) h ¯ the Klein-Gordon equation. Here, h 1 ∂ 2 r 2 i ∂ t 2 � ~ ⇤ : = c 2 is the d’Alembertian (wave) operator. 4 Wednesday, January 18, 12

  5. Left-right asymmetry in weak interactions Dirac’s gamma matrices & the Clifford algebra Motivated by the rest-frame factorization E 2 − m 2 c 4 = 0 ( E + mc 2 )( E − mc 2 ) = 0, ⇒ Dirac a t empted to factorize the Klein-Gordon equation: p 2 − m 2 c 2 = 0 0 = ( β µ p µ + mc )( γ γ ν p ν − mc ) , ⇒ γ γ − γ µ − β µ ) p µ − m 2 c 2 . γ ν p µ p ν + mc ( γ = β µ γ γ γ γ γ As no term in the Klein-Gordon equation is linear in the linear momentum, β μ = γ μ . Equating the quadratic terms then yields γ ν p µ p ν = p 2 ≡ η µ ν p µ p ν , γ µ γ γ γ γ γ γ Since p μ p ν = p ν p μ , γ µ , γ � γ ν = 2 η µ ν , γ γ γ γ γ T is de fi nes the Cli ff ord algebra Cl(1,3)= — (4). 5 Wednesday, January 18, 12

  6. Left-right asymmetry in weak interactions Dirac’s gamma matrices & the Clifford algebra Some canonical identities: � b γ µ = 0, γ ) 2 = 1 ; γ 0 γ γ 1 γ γ 2 γ γ 3 : = i b γ : = i γ γ µ γ γ ν γ γ ρ γ γ σ , ( b γ , γ γ γ γ γ γ γ γ γ γ γ γ 4! ε µ νρσ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ ⇤ = 0, ⇥ γ ± ) 2 = γ γ ± : = 1 2 [ 1 ± b γ ] , γ + + γ γ − = 1 , ( γ γ + , γ γ ± , γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ − γ ρσ ⇤ = η µ ρ γ ⇥ γ µ ν : = i γ νρ + η νσ γ γ µ ν , γ 4 [ γ γ µ , γ γ ν ] , γ νσ − η µ σ γ γ µ ρ − η νρ γ γ µ σ . γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ and similarly: γ µ γ γ µ γ γ ν γ γ ρ γ γ ν γ γ ρ , γ µ = 4 1 , γ µ = 4 γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ µ γ γ ν γ γ ν , γ µ γ γ ν γ γ ρ γ γ σ γ γ ν γ γ ρ γ γ σ , γ µ = − 2 γ γ µ = − 2 γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ ρ = η µ ν γ γ ν + η νρ γ γ µ + i ε µ νρσ γ γ ν γ γ ρ − η µ ρ γ γ µ γ γ σ b γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ and completeness: γ µ + 1 γ µ ν + b γ + b f ( γ γ ) = C 0 1 + C µ γ γ µ b C 0 b 2 C µ ν γ C µ γ γ . γ γ γ γ γ γ γ γ γ γ γ γ γ γ 6 Wednesday, January 18, 12

  7. Left-right asymmetry in weak interactions Dirac’s gamma matrices & the Clifford algebra Finally, we also have γ ν γ γ ρ ] = 0, γ ν γ γ ρ γ γ σ γ γ λ ] = 0, Tr [ γ γ µ ] = 0, Tr [ γ γ µ γ Tr [ γ γ µ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ etc. γ σ ] = 4 ( η µ ν η ρσ − η µ ρ η νσ + η µ σ η νρ ) , γ ν ] = 4 η µ ν , γ ν γ γ ρ γ Tr [ γ γ µ γ Tr [ γ γ µ γ γ γ γ γ γ γ γ γ γ γ γ γ γ ν b γ ρ γ γ σ b γ ] = − 4 i ε µ νρσ . Tr [ b γ ] = 0, Tr [ γ γ µ γ γ ] = 0, Tr [ γ γ µ γ γ µ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ Feynman’s slash-notation / γ µ p µ p : = γ γ γ whereupon p = p 2 1 , p / / p / / q = ( p · q − 2 ip µ γ µ ν q ν ) 1 ; p / / q + / q / p / / q − / q / p = 2 ( p · q ) 1 , p = − 4 i ( p µ γ µ ν q ν ) 1 ; Tr [ / p / q ] = 4 p · q 1 , Tr [ / p / q / r / s ] = 4 [( p · q )( r · s ) − ( p · r )( q · s ) + ( p · s )( q · r )] ; Tr [ / p ] = 0 = Tr [ / p / q / r ] , Tr [ b γ / p / q / r / s ] = 4 i ε µ νρσ p µ q ν r ρ s σ ; γ γ γ γ µ / γ µ / γ µ / p / γ µ = 4 p · q 1 , γ µ = − 2 / p / q / γ µ = − 2 / r / q / q γ p γ p , r γ p . γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ 7 Wednesday, January 18, 12

  8. Left-right asymmetry in weak interactions Dirac’s gamma matrices & the Clifford algebra Dirac conjugation b b b γ 0 ) † = γ γ i ) † = − γ γ µ ) † = γ γ i , i = 1, 2, 3, γ 0 , γ 0 γ γ 0 . ( γ ( γ ( γ γ µ γ and ⇔ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ 0 = γ Ψ : = Ψ † γ γ 0 γ 0 ( γ γ µ ) † γ γ µ : = γ γ µ . ⇔ γ γ γ γ γ γ γ γ γ γ γ γ γ γ 0 � � i ( γ γ 0 ) † � γ 0 = γ γ 0 ( i γ γ 0 γ γ 1 γ γ 2 γ γ 3 ) † γ γ 3 ) † ( γ γ 2 ) † ( γ γ 1 ) † ( γ γ 0 , γ : = γ b γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ 0 = � i γ γ 0 = � i γ γ 3 γ γ 2 γ γ 1 γ γ 0 γ γ 1 γ γ 2 γ γ 3 , γ 3 γ γ 2 γ γ 1 γ = � i γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ = � b γ ± : = 1 2 [ 1 ± b γ ] = 1 2 [ 1 ⌥ b γ ] = : γ γ , γ ⌥ . ) γ γ γ γ γ γ γ γ γ γ γ γ γ γ so that Ψ ± = γ γ ± Ψ = Ψ γ γ ± = Ψ γ γ ⌥ = Ψ ⌥ . γ γ γ γ γ γ Roughly , Ψ L = Ψ – , and Ψ R = Ψ + : le f /right-handed helicity vs . chirality; identical for massless particles only. 8 Wednesday, January 18, 12

  9. Left-right asymmetry in weak interactions Dirac’s gamma matrices & the Clifford algebra In case you prefer 4 × 4 matrices… T e Dirac basis:  1 �  �  O � σ i O O 1 σ σ σ γ i = γ 0 = b , , , γ γ γ γ γ γ γ γ γ γ = σ i − 1 1 O O O σ − σ σ T e Weyl (chiral) basis:  O �  �  1 �  Ψ + � σ i O O − 1 σ σ σ γ 0 = γ i = b , , , Ψ Dirac = ; γ = γ γ γ γ γ γ γ γ γ σ i O O − 1 O − 1 Ψ − − σ σ σ T e Majorana basis:  O �  i σ �  O �  − i σ � σ 2 σ 3 σ 2 σ 1 O O σ σ σ σ σ σ σ − σ σ σ γ 0 = γ 1 = γ 2 = γ 3 = , , , , γ γ γ γ γ γ γ γ γ γ γ γ σ 2 σ 3 σ 2 σ 1 O O O O i σ − i σ σ σ σ σ σ σ σ σ σ σ  σ � σ 2 O σ σ b in which all components of the Dirac spinor Ψ are real, , γ γ γ = γ σ 2 O σ σ σ However, “canonical computations” are preferable. 9 Wednesday, January 18, 12

  10. Left-right asymmetry in weak interactions Dirac and Weyl spinors and equations T e Dirac equation: p 2 − m 2 c 2 = 0 = ( γ γ µ p µ − mc )( γ γ µ p µ + mc ) , γ γ γ γ leads to the choice : h p µ → ¯ ⇥ ⇤ γ µ ∂ µ − mc Ψ ( x ) = 0, γ i ∂ µ i ¯ h γ γ ⇒ where ∂ c ∂ t , ~ ! ( � 1 ∂ µ : = r ) , ∂ x µ , � T e Weyl decomposition: � � Ψ = Ψ + + Ψ − , Ψ ± : = γ ± = 1 2 [ 1 ± b γ ] . γ ± Ψ , γ γ γ γ γ γ γ γ γ γ µ D µ − mc ⇥ ⇤ i ¯ hc γ Ψ h 1 Ψ γ γ ¯ Ψ − − mc ⇥ ⇤ ⇥ ⇤ γ µ D µ γ µ D µ i ¯ hc γ i ¯ hc γ = Ψ + Ψ + + Ψ − h Ψ − Ψ + . γ γ γ γ ¯ 10 Wednesday, January 18, 12

  11. Left-right asymmetry in weak interactions Dirac and Weyl spinors and equations So, the (Dirac) mass-term mixes fermions of le f - and right- handed chirality. If the mass is zero (or negligible) le f - and right-handed fermions (approximately) decouple b and can satisfy di ff erent boundary conditions. | {z } | {z } Notice that charge conjugation ⇔ Dirac conjugation ( Ψ ± ) c = ( Ψ ± ) T = ( Ψ γ γ ⌥ ) T = ( γ Ψ c : = ( Ψ ) T , γ ± ) T Ψ c γ γ γ γ For a chargeless fermion (neutrino), can Ψ → Ψ c : Ψ ± ( Ψ ± ) c = Ψ γ γ ⌥ ) T Ψ c = Ψ γ γ ⌥ Ψ c , in Dirac & Weyl bases . γ ⌥ ( γ γ γ γ γ γ γ T is allows a Majorana mass-term for chargeless particles, but not for charged particles (quarks, charged leptons). 11 Wednesday, January 18, 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend