vectorial boolean functions with very low differential
play

Vectorial Boolean Functions with very Low Differential-linear - PowerPoint PPT Presentation

Vectorial Boolean Functions with very Low Differential-linear Uniformity using MaioranaMcFarland type Construction Deng Tang 1 , 2 , Bimal Mandal 3 , Subhamoy Maitra 4 1 School of Mathematics, Southwest Jiaotong University, Chengdu, China 2


  1. Vectorial Boolean Functions with very Low Differential-linear Uniformity using Maiorana–McFarland type Construction Deng Tang 1 , 2 , Bimal Mandal 3 , Subhamoy Maitra 4 1 School of Mathematics, Southwest Jiaotong University, Chengdu, China 2 State Key Laboratory of Cryptology, Beijing, 100878, China 3 CARAMBA, INRIA, Nancy–Grand Est., France 4 Indian Statistical Institute, Kolkata, India Indocrypt 2019

  2. Outlines ◮ Introduction • DLCT • Existing results ◮ New properties of the DLCT ◮ Differential-linear uniformity of known balanced ( n, m ) -function • Modified inverse functions • Modified Maiorana–McFarland bent functions ◮ Construction of a new class of balanced ( n, m ) -function ◮ Balanced (4 t, t − 1) -function with very low differential-linear uniformity ◮ Implementation ◮ Conclusions 1 / 24

  3. Introduction: DLCT and Existing results I 2 = { x = ( x 1 , x 2 , . . . , x n ) : x i ∈ F 2 , 1 ≤ i ≤ n } ∼ ◮ F n = F 2 n 2 : wt( x ) = � n ◮ Hamming weight of x ∈ F n i=1 x i ◮ Vectorial Boolean function or ( n, m ) -function: S : F n → F m 2 − 2 ◮ Boolean function in n variables: s : F n 2 − → F 2 ◮ Support of s : supp(s) = { x ∈ F n 2 : s( x ) = 1 } ◮ S ( x ) = ( s 1 ( x ) , s 2 ( x ) , . . . , s m ( x )) . • s i , 1 ≤ i ≤ m : Coordinate function of S • λ · S, λ ∈ F m ∗ 2 : Component function of S ◮ Autocorrelation of a component function λ · S of S at α ∈ F n 2 : � ( − 1) λ · ( S ( x ) ⊕ S ( x ⊕ α )) . C λ · S ( α ) = x ∈ F n 2 2 / 24

  4. Introduction: DLCT and Existing results II ◮ Walsh–Hadamard transform of an ( n, m ) -function S at ( α, λ ) : � ( − 1) λ · S ( x ) ⊕ α · x . W λ · S ( α ) = x ∈ F n 2 ◮ Nonlinearity of an ( n, m ) -function S : 2 n − 1 − 1 nl ( S ) = max | W λ · S ( α ) | . 2 ( α,λ ) ∈ F n 2 × F m ∗ 2 ◮ Differential uniformity of an ( n, m ) -function S : # { x ∈ F n δ ( S ) = max 2 : S ( x ) ⊕ S ( x ⊕ α ) = β } . α ∈ F n ∗ 2 , β ∈ F m 2 ◮ Differential distribution table (DDT) of ( n, m ) -function S : DDT S ( α, β ) = # { x ∈ F n 2 : S( x ) ⊕ S( x ⊕ α ) = β } . 3 / 24

  5. Introduction: DLCT and Existing results III ◮ Langford and Hellman at CRYPTO’94 first introduced the differential-linear cryptanalysis. ◮ Bar-On et al. at EUROCRYPT’19 proposed the differential linear connectivity table (DLCT). ◮ DLCT of an ( n, m ) -function S : DLCT S ( α, λ ) = # { x ∈ F n 2 : λ · S( x ) = λ · S( x ⊕ α ) } − 2 n − 1 . • DLCT S ( α, λ ) = 2 n − 1 , if α = 0 or λ = 0 . • DLCT S ( α, λ ) = 1 2 ( − 1) v · λ DDT S ( α, v ) . � v ∈ F m 2 ◮ Differential-linear uniformity of S : DL(S) = max | DLCT S ( α, λ ) | . ( α,λ ) ∈ F n ∗ 2 × F m ∗ 2 4 / 24

  6. Introduction: DLCT and Existing results IV ◮ Li et al. [arXiv:1907.05986, 2019] investigated the properties of DLCT and differential-linear uniformity of some class of ( n, m ) -function. ◮ Canteaut et al. [ia.cr/2019/848, 2019] derived similar results on DLCT independently. ◮ They proved that DLCT S ( α, λ ) = 1 2 C λ · S ( α ) , and so, � � 1 � � DL(S) = max � C λ · S ( α ) � . � � 2 ( α,λ ) ∈ F n ∗ 2 × F m ∗ 2 ◮ Maiorana-McFarland bent functions in 2 k variables (JCTA 1973): h ( x , y ) = φ ( x ) · y ⊕ p ( x ) 5 / 24

  7. Introduction: DLCT and Existing results V ◮ h can be written as h = h 0 || h 1 || . . . || h 2 k − 1 , where h i ( y ) = h ( x i , y ) , for all y ∈ F k 2 . ◮ In FSE’94, Dobbertin first constructed a balanced Boolean function with high nonlinearity. � φ ( x ) · y , if x � = 0 s ( x , y ) = g ( y ) , if x = 0 ◮ Tang et al. (IEEE-TIT 2018), Kavut et al. (DCC 2019) and Tang et al. (SIDMA 2019) also constructed the balanced Boolean functions. ◮ Let n = 2 k be an even integer greater than 4 .  if ( x , y ) ∈ { 0 } × F k u ( y ) , 2  if ( x , y ) ∈ F k ∗ 2 × F k ∗ f ( x , y ) = φ ( x ) · y , 2 if ( x , y ) ∈ F k ∗ v ( x ) , 2 × { 0 }  6 / 24

  8. New properties of the DLCT I ◮ E 0 a = { x ∈ F n 2 : a · x = 0 } , a ∈ F n 2 . ◮ Im ( D α S ) = { y ∈ F m 2 : y = S ( x ) ⊕ S ( x ⊕ α ) , x ∈ F n 2 } . ◮ DLCT S ( α, λ ) = # { x ∈ F n 2 : λ · S( x ) = λ · S( x ⊕ α ) } − 2 n − 1 . Proposition 1 For any ( n, m ) -function S , α ∈ F n 2 and λ ∈ F m 2 , � DDT S ( α, δ ) − 2 n − 1 . DLCT S ( α, λ ) = δ ∈ E 0 λ Corollary 1 Let S be an ( n, m ) -function. For any α ∈ F n ∗ and λ ∈ F m ∗ 2 , 2 DLCT S ( α, λ ) = 2 n − 1 if and only if Im ( D α S ) ⊂ E 0 λ . Moreover, DLCT S ( α, λ ) = − 2 n − 1 if and only if Im ( D α S ) ⊂ F m 2 \ E 0 λ . 7 / 24

  9. New properties of the DLCT II Corollary 2 Let S be an APN permutation over F n 2 . For any α, λ ∈ F n ∗ 2 , DLCT S ( α, λ ) ≤ 2 n − 1 − 2 . Moreover, DLCT S ( α, λ ) + 2 n − 1 = 0 if and only if Im ( D α S ) = F n 2 \ E 0 λ . Open problem 1 (Li et al., arXiv:1907.05986) For an odd integer n , are there ( n, n ) -function S other than the n − 1 2 ? Kasami–Welch APN functions that have DL(S) = 2 8 / 24

  10. New properties of the DLCT III Theorem 1 Let n be an odd integer. For an APN ( n, n ) -function S , n − 1 if and only if for any α, λ ∈ F n ∗ DL(S) = 2 2 2 2 n − 2 − 2 n − 1 2 − 1 ≤ # E 0 λ ∩ Im ( D α S ) ≤ 2 n − 2 + 2 n − 1 2 − 1 . 9 / 24

  11. Differential-linear uniformity of known balanced ( n, m ) -function I ◮ Qu et al. (IEEE-TIT 2013): I 1 ( x ) = x 2 n − 2 ⊕ f ( x ) , where f are well-choose Boolean functions such that f ( x 2 n − 2 ) ⊕ f ( x 2 n − 2 ⊕ 1) = 0 . ◮ Tang et al. (DCC 2015): I 2 ( x ) = ( x ⊕ g ( x )) 2 n − 2 , where g are well-choose Boolean functions such that g ( x ) ⊕ g ( x ⊕ 1) = 0 . Theorem 2 For any I 1 and I 2 , we have • DL( I 1 ) ≥ 2 n/ 2 − 2 and � 2 t � 1 − � ⌊ n/ 2 ⌋ • DL( I 2 ) ≥ 1 t =0 ( − 1) n − t n � n − t � . 2 n − t t 10 / 24

  12. Differential-linear uniformity of known balanced ( n, m ) -function II ◮ Let n = 2 k and � φ ( x ) · y , if x � = 0 s ( x , y ) = g ( y ) , if x = 0 Lemma 1 Let s be an n = 2 k -variable Boolean function defined as above, then for any ( a , b ) ∈ F k 2 × F k 2 we have 2 n  if a = b = 0  − 2 k + C g ( b ) , if a = 0 , b ∈ F k ∗ C s ( a , b ) = . 2 2( − 1) φ ( a ) · b W g ( φ ( a )) , if a ∈ F k ∗ 2 , b ∈ F k  2 11 / 24

  13. Differential-linear uniformity of known balanced ( n, m ) -function III Theorem 3 Let s be an n = 2 k -variable Boolean function defined as above and there exists b ∈ F k ∗ such that C g ( b ) = 0 . If s is a component 2 function of an ( n, m ) -function S , then we have DL(S) ≥ 2 k − 1 . 12 / 24

  14. Construction of a new class of balanced ( n, m ) -function I Construction 1 Let n = 2 k ≥ 4 be an even integer. We construct an ( n, m ) -func- tion S whose coordinate functions s i ’s (1 ≤ i ≤ m ) are defined as follows:  if ( x , y ) ∈ { 0 } × F k u i ( y ) , 2  if ( x , y ) ∈ F k ∗ 2 × F k ∗ s i ( x , y ) = φ i ( x ) · y , , 2 if ( x , y ) ∈ F k ∗ v i ( x ) , 2 × { 0 }  where x , y ∈ F k 2 , and 1. φ i ’s are mappings over F k 2 such that l 1 φ 1 ⊕ l 2 φ 2 ⊕ · · · ⊕ l m φ m is a permutation and l 1 φ 1 ( 0 ) ⊕ l 2 φ 2 ( 0 ) ⊕ · · · ⊕ l m φ m ( 0 ) = 0 , 2. u i ’s and v i ’s are Boolean functions over F k 2 such that i =1 l i v i ) = 2 k − 1 and ⊕ m wt( ⊕ m i =1 l i u i ) ⊕ wt( ⊕ m i =1 l i u i ( 0 ) = ⊕ m i =1 l i v i ( 0 ) = 0 . 13 / 24

  15. Construction of a new class of balanced ( n, m ) -function II Theorem 4 For any n = 2 k ≥ 4 , every ( n, m ) -function S generated by Construction 1 is balanced. Theorem 5 Let n = 2 k ≥ 4 and S be an ( n, m ) -function generated by Construction 1. For any l = ( l 1 , l 2 , · · · , l m ) ∈ F m ∗ 2 , we have  0 , if ( a , b ) = ( 0 , 0 )  if ( a , b ) ∈ { 0 } × F k ∗  W l · U ( b ) + W l · V ( 0 ) ,  2 W l · S ( a , b ) = , if ( a , b ) ∈ F k ∗ W l · U ( 0 ) + W l · V ( a ) , 2 × { 0 }   ( − 1) ( l · Φ) − 1 ( b ) · a 2 k + W l · U ( b ) + W l · V ( a ) , if ( a , b ) ∈ F k ∗ 2 × F k ∗  2 where U = ( u 1 , . . . , u m ) , V = ( v 1 , . . . , v m ) and Φ = ( φ 1 , . . . , φ m ) . 14 / 24

  16. Construction of a new class of balanced ( n, m ) -function III Theorem 6 Let the notation be the same as in Theorem 5. Let n = 2 k ≥ 4 and S be an ( n, m ) -function generated by Construction 1. For any l = ( l 1 , l 2 , · · · , l m ) ∈ F m ∗ 2 , we have  2 n , if ( a , b ) = ( 0 , 0 )  C l · U ( b ) + 2W (l · V) ′ ( b ) − 2 k , if ( a , b ) ∈ { 0 } × F k ∗   2 C l · S ( a , b ) = , C l · V ( a ) + 2W l · U ((l · Φ)( a )) − 2 k , if ( a , b ) ∈ F k ∗ 2 × { 0 }   2( − 1) ( l · Φ)( a ) · b W l · U � � if ( a , b ) ∈ F k ∗ 2 × F k ∗  ( l · Φ)( a ) + W ( l · V ) ′′ ( b ) + 8 t, 2 ( l · Φ) − 1 ( x ) where ( l · V ) ′ ( x ) = ( l · V ) � � , ( l · V ) ′′ ( x ) = ( l · Φ) − 1 ( x ) ⊕ a � � ( l · V ) , and t equals 1 if l · V ( a ) = l · U ( b ) = 1 and equals 0 otherwise. 15 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend