dynamics of non neutrally buoyant particles particles with
play

Dynamics of non-neutrally buoyant particles Particles with r - PowerPoint PPT Presentation

Dynamics of non-neutrally buoyant particles Particles with r vanishing intertia r r d X r V u ( X , t ) = = (fluid elements) dt Impurities: r r r 2 particles with d X d V F = = 2 finite inertia dt dt m and/or


  1. Dynamics of non-neutrally buoyant particles

  2. Particles with r vanishing intertia r r d X r V u ( X , t ) = = (fluid elements) dt Impurities: r r r 2 particles with d X d V F = = 2 finite inertia dt dt m and/or finite size

  3. r r d X Impurities: V dt = particles with finite inertia r r d V F and/or finite size dt = m

  4. Boussinesq (1885) Basset (1888) Faxen (1922) Taylor (1928) Stommel (1949) Maxey and Riley (1983) Auton, Hunt and Prud’homme (1988) Michaelides (1997)

  5. A simplified equation for the dynamics of impurities r D r r V − r 6 a 2 ∇ 2 r r   d V Dt − 9 µ u u − 1 ( ) u g ρ p dt = ρ f  + ρ p − ρ f  2 a 2   r r r r 2 R ρ p − ρ f ( ) + ( ) − 2 V − ρ f u Ω × ρ p Ω r V − r 10 a 2 ∇ 2 r − ρ f   d u − 1 u   2 dt   r t V − r 6 a 2 ∇ 2 r   − 9 µ 1 d u − 1 ∫ u  d τ  1/ 2 [ ] 2 a πν ( t − τ ) d τ   0 D r r r r Ω × r 2 R + µ ∇ 2 r u Dt = −∇ p + ρ f g − 2 ρ f u + ρ f u ρ f Ω µ = ρ f ν

  6. Difference between D/DT and d/dt D r ∂ u = + ⋅ ∇ Dt t ∂ r d ∂ V = + ⋅ ∇ dt t ∂

  7. Discard Faxen corrections r dt = δ D r r V − r ) r d V Dt − 1 u ( ) + 1 − δ ( u g τ a r r r V − δ r 2 ( ) + ( ) − 2 u R 1 − δ Ω × Ω r r t ) − Re 1/ 2 V − r V − r d a 1 d − δ ( ( ) d τ ∫ u u 1/ 2 [ ] 2 dt L π ( t − τ ) d τ τ a 0 δ = ρ f ρ p 2    τ a = 2 a Re = St Re = UL ,  9 δ  L  δ ν

  8. 2D horizontal motion, no rotation, no gravity discard addedd mass and Basset term r r r d V D u 1 r ( ) V u = δ − − dt Dt τ a ρ f δ = ρ p 2 2 a UL   Re , Re τ = =   a 9 L δ ν  

  9. 2D horizontal motion, no rotation: formally, a dissipative system r dt = δ D r r V − r d V Dt − 1 u ( ) u τ a Θ = ( X , Y , U , V ) d Θ dt = Φ ( X , Y , U , V ) ∇ 4 ⋅ Φ = − 2 τ a

  10. Example: r dt = δ D r r V − r d V Dt − 1 u ( ) u τ a   r u = ( u , v ) = − ∂ ψ ∂ y , ∂ ψ   ∂ x   ( ) ψ = 2 cos x + cos y

  11. Example: Crisanti, Falcioni, Provenzale, Tanga, Vulpiani, Phys. Fluids (1992)

  12. 2D horizontal motion, no rotation: formally, a dissipative system Consequences: 1. Possibility of chaotic motion also for stationary 2D flow 2. An initially homogeneous particle distribution can become non-homogeneous

  13. Neutrally-bouyant impurities with finite size: δ =1 r dt = D r r V − r d V Dt − 1 u ( ) u τ a δ = ρ f = 1 ρ p 2    τ a = 2 a Re = UL Re = St ,  9  L  ν

  14. Neutrally-bouyant impurities with finite size: What if D/Dt=d/dt r r V − r V − r d ) = − 1 ( ( ) u u dt τ a r r   V = r V − r ) 0 exp − 1 ( u + u   τ a   δ = ρ f = 1 ρ p 2    τ a = 2 a Re = UL Re ,  9  L  ν

  15. d ≠ D But dt Dt r r r V − r V − r ) ⋅ ∇ r V − r d u − 1 ( ) = − ( ( ) u u u dt τ a δ = ρ f = 1 ρ p 2    τ a = 2 a Re = UL Re ,  9 L   ν Babiano, Cartwright, Piro, Provenzale, PRL (2000)

  16. r r r V − r V − r ) ⋅ ∇ r V − r d u − 1 ( ) = − ( ( ) u u u dt τ a r r V − r A = u r r   d dt = − J + 1 A A  ⋅  τ a     ∂ x u ∂ y u J =   ∂ x v ∂ y v  

  17. r r V − r A = u r r   d dt = − J + 1 A A  ⋅  τ a     ∂ x u ∂ y u J =   ∂ x v ∂ y v   4 s 2 − ζ 2 ( ) = − det J = λ 2 Q = 1 Trace ( J ) = 0   λ − 1 r 0   r d A τ a D   A dt = ⋅ D − λ − 1   0   τ a  

  18. ( ) cos y ψ = A cos x + B sin ω t

  19. ( ) cos y ψ = A cos x + B sin ω t

  20. 2D turbulence

  21. Falling impurities (no rotation) r dt = δ D r r V − r ) r d V Dt − 1 u ( ) + 1 − δ ( u g τ a δ = ρ f ρ p 2    τ a = 2 a Re = UL Re ,  9 δ L   ν

  22. Very heavy impurities δ =0 r r V − r ) + r d dt = − 1 V ( u g τ a

  23. Stommel (1949): permanent suspension r r V − r ) + r 0 = d dt = − 1 V ( u g τ a r r V = r u + r τ a = r g u + W   r u = ( u , v ) = − ∂ψ ∂ y , ∂ψ   ∂ x   r    = − ∂ ˜  ∂ y , ∂ ˜  V = ( u , v − g τ a ) = − ∂ψ ∂ y , ∂ψ ψ ψ ∂ x − g τ a    ∂ x     ˜ ψ = ψ − g τ a x Time dependence: Smith and Spiegel (1985)

  24. Maxey and Corrsin (1986): permanent suspension is not possible r r V − r ) + r 0 ≠ d dt = − 1 V ( u g τ a

  25. permanent suspension is possible in more complex flow fields r r V − r ) + r 0 ≠ d dt = − 1 V ( u g τ a 2D stationary random field with Kolmogorov energy spectrum k -5/3 (Pasquero, Provenzale, Spiegel, PRL, 2003)

  26. Distribution of fall velocities r r V − r ) + r d dt = − 1 V ( u g τ a terminal velocity in still air : W = g τ a What happens in the presence of a fluid flow ? Faster than free fall: Maxey (1987), Wang and Maxey (1993) Slower than free fall: Fung (1993), Davila and Hunt (2001)

  27. τ k = ν 1/ 2 ε − 1/ 2 E ( k ) = ε 2/ 3 k − 5/ 3 for

  28. What happens for a 2D time evolving random field ?

  29. A wide distribution of suspension times can have important effects on particle growth by condensation: Broadening of cloud droplet spectra The prolonged suspension times lead to a wide distribution of fall velocities This can have important effects on particle collisions and reactions

  30. The role of rotation r dt = δ D r r V − r ) r d V Dt − 1 u ( ) + 1 − δ ( u g τ a r r r V − δ r 2 ( ) + ( ) − 2 u R 1 − δ Ω × Ω δ = ρ f ρ p 2    τ a = 2 a Re = UL Re ,  9 δ L   ν Tanga, Doctorate Thesis Montabone, Doctorate Thesis Tanga et al., ICARUS (1996) Provenzale, Annu. Rev. Fluid Mech . (1999)

  31. The role of rotation on a horizontal plane (discard the centrifugal term ) Heavy grains concentrate in anticyclones

  32. For very heavy particles ( δ = 0) r r r r r V − r ) + r d dt = − 1 V 2 ( u g − 2 V + R Ω × Ω τ a

  33. Dust grains in the solar nebula r r r r V − r d dt = − 1 V ( ) − 2 u V Ω × τ E − GM r + Ω 2 r ˆ r 2 ˆ r δ = 10 − 8 Epstein regime Tanga, Babiano, Dubrulle, Provenzale, ICARUS (1996) Bracco, Chavanis, Provenzale, Spiegel, Phys. Fluids ( 2000)

  34. Non-neutral impurities have a richer behavior than fluid parcels. However, the prediction and interpretation of their motion is not that easy: Even the form of the equations of motion is not really known.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend