dynamics of gases of particles
play

Dynamics of gases of particles with singular repulsion Djalil CHAFA - PowerPoint PPT Presentation

Dynamics of gases of particles Dynamics of gases of particles with singular repulsion Djalil CHAFA Paris-Dauphine / PSL Random Matrices and Related Topics KIAS, Seoul, Korea May 6-10, 2019 1/28 Dynamics of gases of particles Introduction


  1. Dynamics of gases of particles Coulomb gases Coulomb energy and equilibrium measure � Coulomb energy of probability measure µ on R d : �� E ( µ ) = g ( x − y ) µ ( d x ) µ ( d y ) ∈ R ∪{ + ∞ } . � Coulomb energy with confining potential (external field) � E V ( µ ) = E ( µ )+ V ( x ) µ ( d x ) . � Equilibrium probability measure (electrostatics) µ ∗ = arginf E V � If V is stronger than g at infinity then µ ∗ is compactly supported � If V is smooth then µ ∗ has density ∆ V 2 c d 8/28

  2. Dynamics of gases of particles Coulomb gases Examples of equilibrium measures Interaction g Confinement V Equilibrium µ ∗ d 1 2 arcsine ∞ 1 interval c ( x ) x 2 1 2 semicircle (Dyson) | x | 2 2 2 uniform on a disc (Ginibre) � x � 2 ≥ 3 uniform on a ball d ≥ 2 radial radial in a ring d 9/28

  3. Dynamics of gases of particles Coulomb gases Coulomb gas or one component plasma � Energy of n Coulomb charges 1 n at positions x 1 ,..., x n in R d : H ( x 1 ,..., x n ) = 1 n V ( x i )+ 1 ∑ n 2 ∑ g ( x i − x j ) n i = 1 i � = j 10/28

  4. Dynamics of gases of particles Coulomb gases Coulomb gas or one component plasma � Energy of n Coulomb charges 1 n at positions x 1 ,..., x n in R d : � �� H ( x 1 ,..., x n ) = V ( x ) µ n ( d x )+ g ( x − y ) µ n ( d x ) µ n ( d y ) x � = y � Empirical measure: µ n = 1 n ∑ n i = 1 δ x i 10/28

  5. Dynamics of gases of particles Coulomb gases Coulomb gas or one component plasma � Energy of n Coulomb charges 1 n at positions x 1 ,..., x n in R d : � �� H ( x 1 ,..., x n ) = V ( x ) µ n ( d x )+ g ( x − y ) µ n ( d x ) µ n ( d y ) x � = y � �� � E � = V ( µ n ) � Empirical measure: µ n = 1 n ∑ n i = 1 δ x i 10/28

  6. Dynamics of gases of particles Coulomb gases Coulomb gas or one component plasma � Energy of n Coulomb charges 1 n at positions x 1 ,..., x n in R d : � �� H ( x 1 ,..., x n ) = V ( x ) µ n ( d x )+ g ( x − y ) µ n ( d x ) µ n ( d y ) x � = y � �� � E � = V ( µ n ) � Empirical measure: µ n = 1 n ∑ n i = 1 δ x i � Gibbs measure on ( R d ) n : � � − β n 2 exp 2 H ( x 1 ,..., x n ) P ( d x ) = d x . Z 10/28

  7. Dynamics of gases of particles Coulomb gases Coulomb gas or one component plasma � Energy of n Coulomb charges 1 n at positions x 1 ,..., x n in R d : � �� H ( x 1 ,..., x n ) = V ( x ) µ n ( d x )+ g ( x − y ) µ n ( d x ) µ n ( d y ) x � = y � �� � E � = V ( µ n ) � Empirical measure: µ n = 1 n ∑ n i = 1 δ x i � Gibbs measure on ( R d ) n : � � − β 2 n 2 E � = exp V ( µ n ) P ( d x ) = d x . Z 10/28

  8. Dynamics of gases of particles Coulomb gases Coulomb gas or one component plasma � Energy of n Coulomb charges 1 n at positions x 1 ,..., x n in R d : � �� H ( x 1 ,..., x n ) = V ( x ) µ n ( d x )+ g ( x − y ) µ n ( d x ) µ n ( d y ) x � = y � �� � E � = V ( µ n ) � Empirical measure: µ n = 1 n ∑ n i = 1 δ x i � Gibbs measure on ( R d ) n : � � − β n E � = exp V ( µ n ) β n = β 2 n 2 . P ( d x ) = d x , Z 10/28

  9. Dynamics of gases of particles Coulomb gases Coulomb gas or one component plasma � Energy of n Coulomb charges 1 n at positions x 1 ,..., x n in R d : � �� H ( x 1 ,..., x n ) = V ( x ) µ n ( d x )+ g ( x − y ) µ n ( d x ) µ n ( d y ) x � = y � �� � E � = V ( µ n ) � Empirical measure: µ n = 1 n ∑ n i = 1 δ x i � Gibbs measure on ( R d ) n : � � − β n E � = exp V ( µ n ) β n = β 2 n 2 . P ( d x ) = d x , Z � ∝ e − β n ( � V , µ n � + � ∆ − 1 µ n , µ n � ) � CLT with Gaussian Free Field 10/28

  10. Dynamics of gases of particles Coulomb gases Empirical measure and equilibrium measure � Random empirical measure under P : n µ n = 1 ∑ δ x i . n i = 1 11/28

  11. Dynamics of gases of particles Coulomb gases Empirical measure and equilibrium measure � Random empirical measure under P : n µ n = 1 ∑ δ x i . n i = 1 2 n 2 ≫ n then with probability one � If V is smooth and if β n = β µ n − n → ∞ µ ∗ . → 11/28

  12. Dynamics of gases of particles Coulomb gases Empirical measure and equilibrium measure � Random empirical measure under P : n µ n = 1 ∑ δ x i . n i = 1 2 n 2 ≫ n then with probability one � If V is smooth and if β n = β µ n − n → ∞ µ ∗ . → � Laplace method � Large Deviation Principle (Gozlan-C.-Zitt) � � log P dist ( µ n , µ ∗ ) ≥ r n → ∞ − β � � − → inf E V ( µ ) − E V ( µ ∗ ) . n 2 2 dist ( µ , µ ∗ ) ≥ r 11/28

  13. Dynamics of gases of particles Coulomb gases Empirical measure and equilibrium measure � Random empirical measure under P : n µ n = 1 ∑ δ x i . n i = 1 2 n 2 ≫ n then with probability one � If V is smooth and if β n = β µ n − n → ∞ µ ∗ . → � Laplace method � Large Deviation Principle (Gozlan-C.-Zitt) � � log P dist ( µ n , µ ∗ ) ≥ r n → ∞ − β � � − → inf E V ( µ ) − E V ( µ ∗ ) . n 2 2 dist ( µ , µ ∗ ) ≥ r � Quantitative estimates? How to relate dist and E V ( · ) − E V ( µ ∗ ) ? 11/28

  14. Dynamics of gases of particles Concentration of measure Outline Introduction Coulomb gases Concentration of measure Dynamics for planar case 12/28

  15. Dynamics of gases of particles Concentration of measure Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ ∗ ) 13/28

  16. Dynamics of gases of particles Concentration of measure Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ ∗ ) � Coulomb metric � E ( µ − ν ) 13/28

  17. Dynamics of gases of particles Concentration of measure Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ ∗ ) � Coulomb metric � E ( µ − ν ) � Bounded-Lipschitz or Fortet–Mourier distance � d BL ( µ , ν ) = sup f ( x )( µ − ν )( d x ) , � f � Lip ≤ 1 � f � ∞ ≤ 1 13/28

  18. Dynamics of gases of particles Concentration of measure Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ ∗ ) � Coulomb metric � E ( µ − ν ) � Bounded-Lipschitz or Fortet–Mourier distance � d BL ( µ , ν ) = sup f ( x )( µ − ν )( d x ) , � f � Lip ≤ 1 � f � ∞ ≤ 1 � (Monge-Kantorovich-)Wasserstein distance E ( | X − Y | p ) 1 / p . W p ( µ , ν ) = inf ( X , Y ) X ∼ µ , Y ∼ ν 13/28

  19. Dynamics of gases of particles Concentration of measure Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ ∗ ) � Coulomb metric � E ( µ − ν ) � Bounded-Lipschitz or Fortet–Mourier distance � d BL ( µ , ν ) = sup f ( x )( µ − ν )( d x ) , � f � Lip ≤ 1 � f � ∞ ≤ 1 � (Monge-Kantorovich-)Wasserstein distance �� � � 1 / p | x − y | p π ( d x , d y ) W p ( µ , ν ) = inf . π ∈ Π( µ , ν ) 13/28

  20. Dynamics of gases of particles Concentration of measure Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ ∗ ) � Coulomb metric � E ( µ − ν ) � Bounded-Lipschitz or Fortet–Mourier distance � d BL ( µ , ν ) = sup f ( x )( µ − ν )( d x ) , � f � Lip ≤ 1 � f � ∞ ≤ 1 � Kantorovich-Rubinstein duality � W 1 ( µ , ν ) = sup f ( x )( µ − ν )( d x ) . � f � Lip ≤ 1 13/28

  21. Dynamics of gases of particles Concentration of measure Probability metrics and topologies � Coulomb divergence (Large Deviations rate function) E V ( µ ) − E V ( µ ∗ ) � Coulomb metric � E ( µ − ν ) � Bounded-Lipschitz or Fortet–Mourier distance � d BL ( µ , ν ) = sup f ( x )( µ − ν )( d x ) , � f � Lip ≤ 1 � f � ∞ ≤ 1 � Kantorovich-Rubinstein duality � d BL ( µ , ν ) ≤ W 1 ( µ , ν ) = sup f ( x )( µ − ν )( d x ) . � f � Lip ≤ 1 13/28

  22. Dynamics of gases of particles Concentration of measure Local Coulomb transport inequality Theorem (Transport type inequality – C.-Hardy-Maïda) W 1 ( µ , ν ) 2 ≤ C D E ( µ − ν ) . 14/28

  23. Dynamics of gases of particles Concentration of measure Local Coulomb transport inequality Theorem (Transport type inequality – C.-Hardy-Maïda) D ⊂ R d compact, supp ( µ + ν ) ⊂ D, E ( µ ) < ∞ and E ( ν ) < ∞ , W 1 ( µ , ν ) 2 ≤ C D E ( µ − ν ) . 14/28

  24. Dynamics of gases of particles Concentration of measure Local Coulomb transport inequality Theorem (Transport type inequality – C.-Hardy-Maïda) D ⊂ R d compact, supp ( µ + ν ) ⊂ D, E ( µ ) < ∞ and E ( ν ) < ∞ , W 1 ( µ , ν ) 2 ≤ C D E ( µ − ν ) . � Constant C D is ≈ Vol ( B 4 Vol ( D ) ) 14/28

  25. Dynamics of gases of particles Concentration of measure Local Coulomb transport inequality Theorem (Transport type inequality – C.-Hardy-Maïda) D ⊂ R d compact, supp ( µ + ν ) ⊂ D, E ( µ ) < ∞ and E ( ν ) < ∞ , W 1 ( µ , ν ) 2 ≤ C D E ( µ − ν ) . � Constant C D is ≈ Vol ( B 4 Vol ( D ) ) � Extends free transport inequality to any d 14/28

  26. Dynamics of gases of particles Concentration of measure Idea of proof of Coulomb transport inequality � Potential: if U µ ( x ) = g ∗ µ ( x ) then ∆ U µ ( x ) = − c d µ 15/28

  27. Dynamics of gases of particles Concentration of measure Idea of proof of Coulomb transport inequality � Potential: if U µ ( x ) = g ∗ µ ( x ) then ∆ U µ ( x ) = − c d µ � Electric field: ∇ U µ ( x ) . “Carré du champ”: | ∇ U µ | 2 15/28

  28. Dynamics of gases of particles Concentration of measure Idea of proof of Coulomb transport inequality � Potential: if U µ ( x ) = g ∗ µ ( x ) then ∆ U µ ( x ) = − c d µ � Integration by parts & Schwarz’s inequality in R d and L 2 � � f ( x )∆ U µ − ν ( x ) d x f ( x )( µ − ν )( d x ) = − c d � � � 1 / 2 | ∇ U µ − ν ( x ) | 2 d x ≤ � f � Lip | D | 15/28

  29. Dynamics of gases of particles Concentration of measure Idea of proof of Coulomb transport inequality � Potential: if U µ ( x ) = g ∗ µ ( x ) then ∆ U µ ( x ) = − c d µ � Integration by parts & Schwarz’s inequality in R d and L 2 � � f ( x )∆ U µ − ν ( x ) d x f ( x )( µ − ν )( d x ) = − c d � � � 1 / 2 | ∇ U µ − ν ( x ) | 2 d x ≤ � f � Lip | D | � Integration by parts again � � | ∇ U µ − ν ( x ) | 2 d x = − U µ − ν ( x )∆ U µ − ν ( x ) d x = c d E ( µ − ν ) . 15/28

  30. Dynamics of gases of particles Concentration of measure Idea of proof of Coulomb transport inequality � Potential: if U µ ( x ) = g ∗ µ ( x ) then ∆ U µ ( x ) = − c d µ � Integration by parts & Schwarz’s inequality in R d and L 2 � � f ( x )∆ U µ − ν ( x ) d x f ( x )( µ − ν )( d x ) = − c d � � � 1 / 2 | ∇ U µ − ν ( x ) | 2 d x ≤ � f � Lip | D | � Integration by parts again � � | ∇ U µ − ν ( x ) | 2 d x = − U µ − ν ( x )∆ U µ − ν ( x ) d x = c d E ( µ − ν ) . � Finally W 1 ( µ , ν ) 2 ≤ | D | c d E ( µ − ν ) . 15/28

  31. Dynamics of gases of particles Concentration of measure Coulomb transport inequality for equilibrium measures Corollary (Transport type inequality – C.-Hardy-Maïda) � � d BL ( µ , µ ∗ ) 2 ≤ C BL E V ( µ ) − E V ( µ ∗ ) . 16/28

  32. Dynamics of gases of particles Concentration of measure Coulomb transport inequality for equilibrium measures Corollary (Transport type inequality – C.-Hardy-Maïda) For any probability measure µ on R d with E ( µ ) < ∞ � � d BL ( µ , µ ∗ ) 2 ≤ C BL E V ( µ ) − E V ( µ ∗ ) . Moreover if V has at least quadratic growth then W 1 ( µ , µ ∗ ) 2 ≤ C W 1 � � E V ( µ ) − E V ( µ ∗ ) . 16/28

  33. Dynamics of gases of particles Concentration of measure Coulomb transport inequality for equilibrium measures Corollary (Transport type inequality – C.-Hardy-Maïda) For any probability measure µ on R d with E ( µ ) < ∞ � � d BL ( µ , µ ∗ ) 2 ≤ C BL E V ( µ ) − E V ( µ ∗ ) . Moreover if V has at least quadratic growth then W 1 ( µ , µ ∗ ) 2 ≤ C W 1 � � E V ( µ ) − E V ( µ ∗ ) . � Growth condition is optimal for W 1 16/28

  34. Dynamics of gases of particles Concentration of measure Concentration of measure for Coulomb gases Theorem (Concentration inequality – C.-Hardy-Maïda) If V has reasonable growth then for every β , n , r � � ≤ e − a β n 2 r 2 P d BL ( µ n , µ ∗ ) ≥ r . Moreover if V has at least quadratic growth then W 1 instead of d BL . � Optimal order in n 17/28

  35. Dynamics of gases of particles Concentration of measure Concentration of measure for Coulomb gases Theorem (Concentration inequality – C.-Hardy-Maïda) If V has reasonable growth then for every β , n , r � � ≤ e − a β n 2 r 2 + 1 d = 2 ( β 4 n log n )+ b β n 2 − 2 / d + c ( β ) n . P d BL ( µ n , µ ∗ ) ≥ r Moreover if V has at least quadratic growth then W 1 instead of d BL . � Optimal order in n � Explicit constants a , b , c if V is quadratic 17/28

  36. Dynamics of gases of particles Concentration of measure Concentration of measure for Coulomb gases Theorem (Concentration inequality – C.-Hardy-Maïda) If V has reasonable growth then for every β , n , r � � ≤ e − a β n 2 r 2 + 1 d = 2 ( β 4 n log n )+ b β n 2 − 2 / d + c ( β ) n . P d BL ( µ n , µ ∗ ) ≥ r Moreover if V has at least quadratic growth then W 1 instead of d BL . � Optimal order in n � Explicit constants a , b , c if V is quadratic � Implies speed of convergence: �� log n � � if d = 2 , ≤ e − cn 2 r 2 , P W 1 ( µ n , µ ∗ ) ≥ r r ≥ n n − 1 / d if d ≥ 3 . 17/28

  37. Dynamics of gases of particles Concentration of measure Concentration of measure for Coulomb gases Theorem (Concentration inequality – C.-Hardy-Maïda) If V has reasonable growth then for every β , n , r � � ≤ e − a β n 2 r 2 + 1 d = 2 ( β 4 n log n )+ b β n 2 − 2 / d + c ( β ) n . P d BL ( µ n , µ ∗ ) ≥ r Moreover if V has at least quadratic growth then W 1 instead of d BL . � Optimal order in n � Explicit constants a , b , c if V is quadratic � Implies speed of convergence: �� log n � � if d = 2 , ≤ e − cn 2 r 2 , P W 1 ( µ n , µ ∗ ) ≥ r r ≥ n n − 1 / d if d ≥ 3 . � See also Rougerie & Serfaty 17/28

  38. Dynamics of gases of particles Concentration of measure Idea of proof of concentration � Starting point P ( W 1 ( µ n , µ ∗ ) ≥ r ) = 1 � W 1 ( µ n , µ ∗ ) ≥ r e − β 2 n 2 E � = V ( µ n ) d x . Z 18/28

  39. Dynamics of gases of particles Concentration of measure Idea of proof of concentration � Starting point P ( W 1 ( µ n , µ ∗ ) ≥ r ) = 1 � W 1 ( µ n , µ ∗ ) ≥ r e − β 2 n 2 E � = V ( µ n ) d x . Z � Normalizing constant � � β �� 1 n 2 β Z ≤ exp 2 E V ( µ ∗ ) − n 2 E ( µ ∗ ) − S ( µ ∗ ) . 18/28

  40. Dynamics of gases of particles Concentration of measure Idea of proof of concentration � Starting point P ( W 1 ( µ n , µ ∗ ) ≥ r ) = 1 � W 1 ( µ n , µ ∗ ) ≥ r e − β 2 n 2 E � = V ( µ n ) d x . Z � Normalizing constant � � β �� 1 n 2 β Z ≤ exp 2 E V ( µ ∗ ) − n 2 E ( µ ∗ ) − S ( µ ∗ ) . � Regularization: g superharmonic, µ ( ε ) = µ n ∗ λ ε , n n − n 2 E � = V ( µ n ) ≤ − n 2 E V ( µ ( ε ) ∑ n )+ n E ( λ ε )+ n ( V ∗ λ ε − V )( x i ) . i = 1 18/28

  41. Dynamics of gases of particles Concentration of measure Idea of proof of concentration � Starting point P ( W 1 ( µ n , µ ∗ ) ≥ r ) = 1 � W 1 ( µ n , µ ∗ ) ≥ r e − β 2 n 2 E � = V ( µ n ) d x . Z � Normalizing constant � � β �� 1 n 2 β Z ≤ exp 2 E V ( µ ∗ ) − n 2 E ( µ ∗ ) − S ( µ ∗ ) . � Regularization: g superharmonic, µ ( ε ) = µ n ∗ λ ε , n n − n 2 E � = V ( µ n ) ≤ − n 2 E V ( µ ( ε ) ∑ n )+ n E ( λ ε )+ n ( V ∗ λ ε − V )( x i ) . i = 1 � Coulomb transport − E V ( µ ( ε ) 1 ( µ ( ε ) n )+ E V ( µ ∗ ) ≤ − 1 C W 2 n , µ ∗ ) . 18/28

  42. Dynamics of gases of particles Concentration of measure Concentration for spectrum of Ginibre matrices Corollary (Ginibre Random Matrices) If M is n × n with iid Gaussian entries of variance 1 n in C i = 1 | x i | 2 ) ∏ i < j | x i − x j | 2 � Eigenvalues of M ∝ exp( − n ∑ n 19/28

  43. Dynamics of gases of particles Concentration of measure Concentration for spectrum of Ginibre matrices Corollary (Ginibre Random Matrices) If M is n × n with iid Gaussian entries of variance 1 n in C i = 1 | x i | 2 − ∑ i � = j g ( x i − x j )) � Eigenvalues of M ∝ exp( − n ∑ n � Here d = 2, β = 2, V = |·| 2 19/28

  44. Dynamics of gases of particles Concentration of measure Concentration for spectrum of Ginibre matrices Corollary (Ginibre Random Matrices) If M is n × n with iid Gaussian entries of variance 1 n in C then � � ≤ e − 1 4 C n 2 r 2 + 1 2 n log n + n [ 1 C + 3 2 − log π ] . P W 1 ( µ n , µ • ) ≥ r i = 1 | x i | 2 − ∑ i � = j g ( x i − x j )) � Eigenvalues of M ∝ exp( − n ∑ n � Here d = 2, β = 2, V = |·| 2 �� � log( n ) � Provides a.s. W 1 ( µ n , µ • ) = O . n 19/28

  45. Dynamics of gases of particles Concentration of measure Concentration for spectrum of Ginibre matrices Corollary (Ginibre Random Matrices) If M is n × n with iid Gaussian entries of variance 1 n in C then � � ≤ e − 1 4 C n 2 r 2 + 1 2 n log n + n [ 1 C + 3 2 − log π ] . P W 1 ( µ n , µ • ) ≥ r i = 1 | x i | 2 − ∑ i � = j g ( x i − x j )) � Eigenvalues of M ∝ exp( − n ∑ n � Here d = 2, β = 2, V = |·| 2 �� � log( n ) � Provides a.s. W 1 ( µ n , µ • ) = O . n � Bernoulli ± 1 random matrices (universality) µ n → µ • (Tao-Vu 2010) but P ( W 1 ( µ n , µ • ) ≥ r ) is not known 19/28

  46. Dynamics of gases of particles Concentration of measure Concentration for spectrum of Ginibre random matrices 1.0 0.5 0.0 −0.5 −1.0 −1.0 −0.5 0.0 0.5 1.0 plot(eig(rand(n,n)+i*randn(n,n))/sqrt(2*n))) Dynamics leaving invariant in law this picture 20/28

  47. Dynamics of gases of particles Dynamics for planar case Outline Introduction Coulomb gases Concentration of measure Dynamics for planar case 21/28

  48. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | 22/28

  49. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H 22/28

  50. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � 2 d X n d B n t − ∇ H ( X n t = t ) d t . β n 22/28

  51. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � X j , n − X i , n 2 − 2 t d t − 2 d X i , n d B i , n nX i , n n 2 ∑ t t = t | 2 d t . t t | X i , n − X j , n β n j � = i t 22/28

  52. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � X j , n − X i , n 2 α n − 2 α n t d t − 2 α n d X i , n d B i , n n X i , n n 2 ∑ t t = t | 2 d t . t t | X i , n − X j , n β n j � = i t 22/28

  53. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � X j , n − X i , n 2 α n − 2 α n t d t − 2 α n d X i , n d B i , n n X i , n n 2 ∑ t t = t | 2 d t . t t | X i , n − X j , n β n j � = i t t = ( X i , n � Mean-field interacting particle system X n t ) 1 ≤ i ≤ n 22/28

  54. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � X j , n − X i , n 2 α n − 2 α n t d t − 2 α n d X i , n d B i , n n X i , n n 2 ∑ t t = t | 2 d t . t t | X i , n − X j , n β n j � = i t t = ( X i , n � Mean-field interacting particle system X n t ) 1 ≤ i ≤ n � 2D: no convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli 22/28

  55. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � X j , n − X i , n 2 α n − 2 α n t d t − 2 α n d X i , n d B i , n n X i , n n 2 ∑ t t = t | 2 d t . t t | X i , n − X j , n β n j � = i t t = ( X i , n � Mean-field interacting particle system X n t ) 1 ≤ i ≤ n � 2D: no convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli � 1D log-gases are log-concave: 22/28

  56. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � X j , n − X i , n 2 α n − 2 α n t d t − 2 α n d X i , n d B i , n n X i , n n 2 ∑ t t = t | 2 d t . t t | X i , n − X j , n β n j � = i t t = ( X i , n � Mean-field interacting particle system X n t ) 1 ≤ i ≤ n � 2D: no convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli � 1D log-gases are log-concave: ◮ Freeman Dyson – Journal of Mathematical Physics (1962) A Brownian-motion model for the eigenvalues of a random matrix. 22/28

  57. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � X j , n − X i , n 2 α n − 2 α n t d t − 2 α n d X i , n d B i , n n X i , n n 2 ∑ t t = t | 2 d t . t t | X i , n − X j , n β n j � = i t t = ( X i , n � Mean-field interacting particle system X n t ) 1 ≤ i ≤ n � 2D: no convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli � 1D log-gases are log-concave: ◮ Freeman Dyson – Journal of Mathematical Physics (1962) A Brownian-motion model for the eigenvalues of a random matrix. ◮ László Erd˝ os & Horng-Tzer Yau – Courant Lecture Notes (2017) Dynamical Approach To Random Matrix Theory 22/28

  58. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � X j , n − X i , n 2 α n − 2 α n t d t − 2 α n d X i , n d B i , n n X i , n n 2 ∑ t t = t | 2 d t . t t | X i , n − X j , n β n j � = i t t = ( X i , n � Mean-field interacting particle system X n t ) 1 ≤ i ≤ n � 2D: no convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli � 1D log-gases are log-concave: ◮ Freeman Dyson – Journal of Mathematical Physics (1962) A Brownian-motion model for the eigenvalues of a random matrix. ◮ László Erd˝ os & Horng-Tzer Yau – Courant Lecture Notes (2017) Dynamical Approach To Random Matrix Theory ◮ Michel Lassalle – CRAS (1991) Polynômes de Hermite généralisés 22/28

  59. Dynamics of gases of particles Dynamics for planar case Ginibre process i = 1 | x i | 2 + 1 � Ginibre energy H ( x 1 ,..., x n ) = 1 1 n ∑ n n 2 ∑ i � = j log | x i − x j | � Ginibre process on D ⊂ C n = ( R 2 ) n reversible for P ∝ e − β n H � X j , n − X i , n 2 α n − 2 α n t d t − 2 α n d X i , n d B i , n n X i , n n 2 ∑ t t = t | 2 d t . t t | X i , n − X j , n β n j � = i t t = ( X i , n � Mean-field interacting particle system X n t ) 1 ≤ i ≤ n � 2D: no convexity / Brascamp–Lieb / Bakry–Émery / Caffarelli � 1D log-gases are log-concave: ◮ Freeman Dyson – Journal of Mathematical Physics (1962) A Brownian-motion model for the eigenvalues of a random matrix. ◮ László Erd˝ os & Horng-Tzer Yau – Courant Lecture Notes (2017) Dynamical Approach To Random Matrix Theory ◮ Michel Lassalle – CRAS (1991) Polynômes de Hermite généralisés ◮ Optimal Poincaré and log-Sobolev constants (C.-Lehec) 22/28

  60. Dynamics of gases of particles Dynamics for planar case Second moment dynamics Theorem (Second moment dynamics – Bolley-C.-Fontbona) ( R t ) t ≥ 0 = ( 1 n � X t � 2 ) t ≥ 0 is an ergodic Cox–Ingersoll–Ross process: � � � 8 α n + n − 1 R t d B t + 4 α n n d R t = 2 n − R t d t . n β n β n n 23/28

  61. Dynamics of gases of particles Dynamics for planar case Second moment dynamics Theorem (Second moment dynamics – Bolley-C.-Fontbona) ( R t ) t ≥ 0 = ( 1 n � X t � 2 ) t ≥ 0 is an ergodic Cox–Ingersoll–Ross process: � � � 8 α n + n − 1 R t d B t + 4 α n n d R t = 2 n − R t d t . n β n β n n In particular, with γ n = Gamma ( n + n − 1 2 n β n , β n ) , for any t ≥ 0 W 1 ( Law ( R t ) , γ n ) ≤ e − 4 α n n t W 1 ( Law ( R 0 ) , γ n ) . 23/28

  62. Dynamics of gases of particles Dynamics for planar case Second moment dynamics Theorem (Second moment dynamics – Bolley-C.-Fontbona) ( R t ) t ≥ 0 = ( 1 n � X t � 2 ) t ≥ 0 is an ergodic Cox–Ingersoll–Ross process: � � � 8 α n + n − 1 R t d B t + 4 α n n d R t = 2 n − R t d t . n β n β n n Furthermore for any x ∈ D and t ≥ 0 , we have � 1 − 1 �� n t � 2 + n E ( R t | R 0 = r ) = r e − 4 α n 1 − e − 4 α n n t + . 2 n β n i = 1 | z i | 2 + c N . Eigenvectors: ∑ N i = 1 ℜ ( z i ) , ∑ N i = 1 ℑ ( z i ) , ∑ N 23/28

  63. Dynamics of gases of particles Dynamics for planar case McKean–Vlasov mean-field limit Theorem? (MKV Mean-field limit – Bolley-C.-Fontbona) If σ = lim n → ∞ α n β n ∈ [ 0 , ∞ ) then lim n → ∞ µ n t = µ t with ∂ t µ t = σ ∆ µ t + ∇ · (( ∇ V + ∇ g ∗ µ t ) µ t ) . � X i , n t − X j , n � d X i , n 2 α n β n d B i , n − 2 α n n X i , n t d t − 2 α n = t | 2 d t . n ∑ j � = i t | X j , n t − X i , n t t 24/28

  64. Dynamics of gases of particles Dynamics for planar case McKean–Vlasov mean-field limit Theorem? (MKV Mean-field limit – Bolley-C.-Fontbona) If σ = lim n → ∞ α n β n ∈ [ 0 , ∞ ) then lim n → ∞ µ n t = µ t with ∂ t µ t = σ ∆ µ t + ∇ · (( ∇ V + ∇ g ∗ µ t ) µ t ) . � X i , n t − X j , n � d X i , n 2 α n β n d B i , n − 2 α n n X i , n t d t − 2 α n = t | 2 d t . n ∑ j � = i t | X j , n t − X i , n t t n t = 1 � Empirical measure µ n ∑ δ X i , n n t i = 1 24/28

  65. Dynamics of gases of particles Dynamics for planar case McKean–Vlasov mean-field limit Theorem? (MKV Mean-field limit – Bolley-C.-Fontbona) If σ = lim n → ∞ α n β n ∈ [ 0 , ∞ ) then lim n → ∞ µ n t = µ t with ∂ t µ t = σ ∆ µ t + ∇ · (( ∇ V + ∇ g ∗ µ t ) µ t ) . � X i , n t − X j , n � d X i , n 2 α n β n d B i , n − 2 α n n X i , n t d t − 2 α n = t | 2 d t . n ∑ j � = i t | X j , n t − X i , n t t n t = 1 � Empirical measure µ n ∑ δ X i , n n t i = 1 � Some sort of law of large numbers 24/28

  66. Dynamics of gases of particles Dynamics for planar case McKean–Vlasov mean-field limit Theorem? (MKV Mean-field limit – Bolley-C.-Fontbona) If σ = lim n → ∞ α n β n ∈ [ 0 , ∞ ) then lim n → ∞ µ n t = µ t with ∂ t µ t = σ ∆ µ t + ∇ · (( ∇ V + ∇ g ∗ µ t ) µ t ) . � X i , n t − X j , n � d X i , n 2 α n β n d B i , n − 2 α n n X i , n t d t − 2 α n = t | 2 d t . n ∑ j � = i t | X j , n t − X i , n t t n t = 1 � Empirical measure µ n ∑ δ X i , n n t i = 1 � Some sort of law of large numbers � Regimes: ( α n , β n ) = ( n , n 2 ) and ( α n , β n ) = ( n , n ) 24/28

  67. Dynamics of gases of particles Dynamics for planar case McKean–Vlasov mean-field limit Theorem? (MKV Mean-field limit – Bolley-C.-Fontbona) If σ = lim n → ∞ α n β n ∈ [ 0 , ∞ ) then lim n → ∞ µ n t = µ t with ∂ t µ t = σ ∆ µ t + ∇ · (( ∇ V + ∇ g ∗ µ t ) µ t ) . � X i , n t − X j , n � d X i , n 2 α n β n d B i , n − 2 α n n X i , n t d t − 2 α n = t | 2 d t . n ∑ j � = i t | X j , n t − X i , n t t n t = 1 � Empirical measure µ n ∑ δ X i , n n t i = 1 � Some sort of law of large numbers � Regimes: ( α n , β n ) = ( n , n 2 ) and ( α n , β n ) = ( n , n ) � Carrillo–McCann–Villani, Fournier–Hauray–Mischler, Serfaty–Duerinckx, . . . 24/28

  68. Dynamics of gases of particles Dynamics for planar case Numerical analysis and stochastic simulation � Overdamped Langevin dynamics � α d X t = − α ∇ H ( X t ) d t + β d B t 25/28

  69. Dynamics of gases of particles Dynamics for planar case Numerical analysis and stochastic simulation � Overdamped Langevin dynamics � α d X t = − α ∇ H ( X t ) d t + β d B t � t 1 0 δ X s d s = e − β H � Ergodic theorem lim t t → ∞ 25/28

  70. Dynamics of gases of particles Dynamics for planar case Numerical analysis and stochastic simulation � Overdamped Langevin dynamics � α d X t = − α ∇ H ( X t ) d t + β d B t � t 1 0 δ X s d s = e − β H � Ergodic theorem lim t t → ∞ � → Metropolis Adjusted Langevin Algorithm (MALA) 25/28

  71. Dynamics of gases of particles Dynamics for planar case Numerical analysis and stochastic simulation � Overdamped Langevin dynamics � α d X t = − α ∇ H ( X t ) d t + β d B t � t 1 0 δ X s d s = e − β H � Ergodic theorem lim t t → ∞ � → Metropolis Adjusted Langevin Algorithm (MALA) � Underdamped Langevin dynamics (adding momentum/inertia) � d X t = ∇ U ( Y t ) d t � γ = − ∇ H ( X t ) − γ ∇ U ( Y t ) d t + β d B t . d Y t 25/28

  72. Dynamics of gases of particles Dynamics for planar case Numerical analysis and stochastic simulation � Overdamped Langevin dynamics � α d X t = − α ∇ H ( X t ) d t + β d B t � t 1 0 δ X s d s = e − β H � Ergodic theorem lim t t → ∞ � → Metropolis Adjusted Langevin Algorithm (MALA) � Underdamped Langevin dynamics (adding momentum/inertia) � d X t = ∇ U ( Y t ) d t � γ = − ∇ H ( X t ) − γ ∇ U ( Y t ) d t + β d B t . d Y t � t 1 0 δ ( X s , Y s ) d s = e − β H ⊗ e − γ U � Ergodic theorem lim t t → ∞ 25/28

  73. Dynamics of gases of particles Dynamics for planar case Numerical analysis and stochastic simulation � Overdamped Langevin dynamics � α d X t = − α ∇ H ( X t ) d t + β d B t � t 1 0 δ X s d s = e − β H � Ergodic theorem lim t t → ∞ � → Metropolis Adjusted Langevin Algorithm (MALA) � Underdamped Langevin dynamics (adding momentum/inertia) � d X t = ∇ U ( Y t ) d t � γ = − ∇ H ( X t ) − γ ∇ U ( Y t ) d t + β d B t . d Y t � t 1 0 δ ( X s , Y s ) d s = e − β H ⊗ e − γ U � Ergodic theorem lim t t → ∞ � → Hamiltonian or Hybrid Monte Carlo (HMC, C.–Ferré–Stoltz) 25/28

  74. Dynamics of gases of particles Dynamics for planar case Numerical analysis and stochastic simulation � Overdamped Langevin dynamics � α d X t = − α ∇ H ( X t ) d t + β d B t � t 1 0 δ X s d s = e − β H � Ergodic theorem lim t t → ∞ � → Metropolis Adjusted Langevin Algorithm (MALA) � Underdamped Langevin dynamics (adding momentum/inertia) � d X t = ∇ U ( Y t ) d t � γ = − ∇ H ( X t ) − γ ∇ U ( Y t ) d t + β d B t . d Y t � t 1 0 δ ( X s , Y s ) d s = e − β H ⊗ e − γ U � Ergodic theorem lim t t → ∞ � → Hamiltonian or Hybrid Monte Carlo (HMC, C.–Ferré–Stoltz) � → Geometric ergodicity via Lyapunov (Lu–Mattingly) 25/28

  75. Dynamics of gases of particles Dynamics for planar case Eight trajectories for a Dyson Ornstein-Uhlenbeck HMC 26/28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend