math 211 math 211
play

Math 211 Math 211 Lecture #32 Higher Order Equations Harmonic - PowerPoint PPT Presentation

1 Math 211 Math 211 Lecture #32 Higher Order Equations Harmonic Motion April 6, 2001 2 Solutions to y + py + qy = 0 . Solutions to y + py + qy = 0 . Equivalent system: x = A x , where y 0 1


  1. 1 Math 211 Math 211 Lecture #32 Higher Order Equations Harmonic Motion April 6, 2001

  2. 2 Solutions to y ′′ + py ′ + qy = 0 . Solutions to y ′′ + py ′ + qy = 0 . • Equivalent system: x ′ = A x , where � � � � y 0 1 x = A = . and y ′ − q − p • Look for exponential solutions y ( t ) = e λt . • Characteristic equation: λ 2 + pλ + q = 0 . • Characteristic polynomial: λ 2 + pλ + q . • Same for the 2 nd order equation and the system. • Need two linearly independent solutions. Return

  3. 3 Real Roots Real Roots • If λ is a root to the characteristic polynomial then y ( t ) = e λt is a solution. ⋄ y ′′ + 4 y ′ + 3 y = 0 • If λ is a root to the characteristic polynomial of multiplicity 2, then y 1 ( t ) = e λt and y 2 ( t ) = te λt are linearly independent solutions. ⋄ y ′′ + 4 y ′ + 4 y = 0 Return

  4. 4 Complex Roots Complex Roots • If λ = α + iβ is a complex root of the characteristic equation , then so is λ = α − iβ . • A complex valued fundamental set of solutions is z ( t ) = e λt z ( t ) = e λt . and • A real valued fundamental set of solutions is x ( t ) = e αt cos βt y ( t ) = e αt sin βt. and ⋄ y ′′ + 4 y ′ + 8 y = 0 Return

  5. 5 Examples Examples • y ′′ − 5 y ′ + 6 y = 0 . • y ′′ + 25 y = 0 . • y ′′ + 4 y ′ + 13 y = 0 . Return Real roots Complex roots

  6. 6 The Vibrating Spring The Vibrating Spring Newton’s second law: ma = total force. • Forces acting: ⋄ Gravity mg . ⋄ Restoring force R ( x ) . ⋄ Damping force D ( v ) . ⋄ External force F ( t ) . Return

  7. 7 • Newton’s law becomes ma = mg + R ( x ) + D ( v ) + F ( t ) • Hooke’s law: R ( x ) = − kx. k > 0 is the spring constant. • Spring-mass equilibrium x 0 = mg/k. • Set y = x − x 0 . Newton’s law becomes my ′′ = − ky + D ( y ′ ) + F ( t ) . Return

  8. 8 • Damping force D ( y ′ ) = − µy ′ . • Newton’s law becomes my ′′ = − ky − µy ′ + F ( t ) , or my ′′ + µy ′ + ky = F ( t ) , or y ′′ + µ my ′ + k my = 1 mF ( t ) . Return Vibrating spring

  9. 9 RLC Circuit RLC Circuit L I + E C − I R LI ′′ + RI ′ + 1 C I = E ′ ( t ) , or I ′′ + R LC I = 1 1 L I ′ + LE ′ ( t ) . Return Vibrating spring equation

  10. 10 Harmonic Motion Harmonic Motion • Spring: y ′′ + µ m y ′ + k 1 m y = m F ( t ) . • Circuit: I ′′ + R L I ′ + LC I = 1 1 L E ′ ( t ) . • Essentially the same equation. Use x ′′ + 2 cx ′ + ω 2 0 x = f ( t ) . • The equation for harmonic motion. Return

  11. 11 x ′′ + 2 cx ′ + ω 2 0 x = f ( t ) . • ω 0 is the natural frequency. � ⋄ Spring: ω 0 = k/m. � ⋄ Circuit: ω 0 = 1 /LC. • c is the damping constant. • f ( t ) is the forcing term. Return

  12. 12 Simple Harmonic Motion Simple Harmonic Motion No forcing , and no damping. x ′′ + ω 2 0 x = 0 • p ( λ ) = λ 2 + ω 2 0 , λ = ± iω 0 . Fundamental set of solutions x 1 ( t ) = cos ω 0 t x 2 ( t ) = sin ω 0 t. & Return Harmonic motion

  13. 13 General solution x ( t ) = C 1 cos ω 0 t + C 2 sin ω 0 t. • Every solution is periodic with frequency ω 0 . ⋄ ω 0 is the natural frequency. ⋄ The period is T = 2 π/ω 0 . Return

  14. 14 Amplitude and Phase Amplitude and Phase • Put C 1 and C 2 in polar coordinates: C 1 = A cos φ, & C 2 = A sin φ. • Then x ( t ) = C 1 cos ω 0 t + C 2 sin ω 0 t = A cos( ω 0 t − φ ) . � C 2 1 + C 2 • A is the amplitude ; A = 2 . • φ is the phase ; tan φ = C 2 /C 1 . Return

  15. 15 Examples Examples • C 1 = 3 , C 2 = 4 ⇒ A = 5 , φ = 0 . 9273 . • C 1 = − 3 , C 2 = 4 ⇒ A = 5 , φ = 2 . 2143 . • C 1 = − 3 , C 2 = − 4 ⇒ A = 5 , φ = − 2 . 2143 . Return Amplitude & phase

  16. 16 Example Example x ′′ + 16 x = 0 , x (0) = − 2 & x ′ (0) = 4 • Natural frequency: ω 2 0 = 16 ⇒ ω 0 = 4 . • General solution: x ( t ) = C 1 cos 4 t + C 2 sin 4 t. • IC: − 2 = x (0) = C 1 , and 4 = x ′ (0) = 4 C 2 . • Solution x ( t ) = − 2 cos 2 t + sin 2 t √ = 5 cos(2 t − 2 . 6779) . Return Amplitude & phase

  17. 17 Damped Harmonic Motion Damped Harmonic Motion x ′′ + 2 cx ′ + ω 2 0 x = 0 • p ( λ ) = λ 2 + 2 cλ + ω 2 � c 2 − ω 2 0 ; roots − c ± 0 . • Three cases ⋄ c < ω 0 Underdamped ⋄ c > ω 0 Overdamped ⋄ c = ω 0 Critically damped Return Harmonic motion

  18. 18 Underdamped Underdamped • c < ω 0 • Two complex roots λ and λ , where 0 − c 2 . � ω 2 λ = − c + iω and ω = • General solution x ( t ) = e − ct [ C 1 cos ωt + C 2 sin ωt ] . = Ae − ct cos( ωt − φ ) Amplitude & phase

  19. 19 Overdamped Overdamped • c > ω 0 , so two real roots � c 2 − ω 2 λ 1 = − c − 0 � c 2 − ω 2 λ 2 = − c + 0 . • λ 1 < λ 2 < 0 . • General solution x ( t ) = C 1 e λ 1 t + C 2 e λ 2 t . Return

  20. 20 Critically Damped Critically Damped • c = ω 0 • One negative real root λ = − c with multiplicity 2. • General solution x ( t ) = e − ct [ C 1 + C 2 t ] . Return

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend