super kamiokande kamiokande s s solar neutrino results
play

Super- -Kamiokande Kamiokande s s Solar Neutrino results Solar - PowerPoint PPT Presentation

Super- -Kamiokande Kamiokande s s Solar Neutrino results Solar Neutrino results Super M. Nakahata Kamioka observatory, ICRR, Univ. of Tokyo for Super-Kamiokande collaboration Super-Kamiokande(SK) detector Day/night and energy


  1. Super- -Kamiokande Kamiokande’ ’s s Solar Neutrino results Solar Neutrino results Super M. Nakahata Kamioka observatory, ICRR, Univ. of Tokyo for Super-Kamiokande collaboration � Super-Kamiokande(SK) detector � Day/night and energy spectrum in SK-I � Oscillation analysis � Preliminary results from SK-II � Future prospects

  2. Super- -Kamiokande detector Kamiokande detector Super 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 SK-I SK-II SK-III accident SK full 50kton total, reconstruction 22kton fiducial (plan) volume 1000m underground Water Cherenkov detector 11,146 Number of ID (*) PMTs 5,182 40% Photocathod coverage 19% ~6 p.e./MeV Cherenkov light yield ~2.8 p.e./MeV Acrylic+FRP cases (*) Inner Detector Number of ID PMTs will be back to 11,146 in SK-III.

  3. Solar neutrino measurement in SK � 8 B neutrino measurement by ν + e - → ν + e - � Sensitive to ν e , ν µ , ν τ σ(ν µ(τ) + e - ) =~0.15 × σ(ν e + e - ) � High statistics ~15ev./day with E e > 5MeV � Real time measurement. Studies on time variations. � Studies on energy spectrum. � Precise energy calibration by LINAC and 16 N. Expected spectrum distortion Expected day/night (at LMA region) tan 2 ( θ ) ∆ m 2 (eV 2 ) asymmetry 6.3 x 10 -5 0.55 4.8 x 10 -5 0.38 Data/SSM 0.38 7.2 x 10 -5 0.38 10.0 x 10 -5 7.2 x 10 -5 0.28 ~10% Recoil electron energy (MeV)

  4. Super- -Kamiokande Kamiokande- -I solar neutrino data I solar neutrino data Super May 31, 1996 – July 13, 2001 (1496 days ) ν + e - � ν + e - 22400 ± 230 solar ν events (14.5 events/day) [x 10 6 /cm 2 /sec] 8 B flux : 2.35 ± 0.02 ± 0.08 Data +0.014 ± 0.004 = 0.406 -0.013 SSM(BP2004) ( Data/SSM(BP2000) = 0.465 ± 0.005 +0.016/-0.015 )

  5. SK-I day/night difference A DN = (Day-Night) (Day+Night)/2

  6. Un- -binned day/night analysis binned day/night analysis Un Z Day Energy and zenith angle dependence of SK event rate variation. core Example for ∆ m 2 =6.3x10 -5 eV 2 , tan 2 θ =0.55 mantle θ z

  7. Un-binned time variation method # Backgrounds # Signal Event Event Likelihood for solar # Backgrounds # Signal in each energy bins Events Energy “Time” neutrino extraction in each energy bins Events ( ) ∑ N n ( ) ∏∏ − + bin i B S = ⋅ + ⋅ × i L e B u ( c ) m S p ( c , E ) z ( t ) i ν ν ν ν i i i i = ν = 1 i 1 21 Energy bins 21 Energy bins MC = i m ∑ i MC j j Background Shape Background Shape ν Flux Solar ν Flux Solar n Variatio n Time- -Variatio Time Solar Signal Shape Solar Signal Shape

  8. Day/night asymmetry LMA best fit tan 2 θ =0.55 (Assuming BP2000 flux and error) ∆ m 2 =6.3x10 -5 eV 2 tan 2 θ =0.55 A DN =-1.8 ± 1.6 +1.3 % SK data( ± 1 σ) -1.2 expected ∆ m 2 =6.3x10 -5 eV 2 SK data( ± 1 σ)

  9. Energy spectrum of SK-I Best fit solar+KamLAND (as of before ν 2004) (tan 2 θ , ∆ m 2 ) Energy correlated systematic error

  10. Energy spectrum of SK-I ∆ m 2 =7.2x10 -5 eV 2 , tan 2 θ =0.38 Best fit solar+KamLAND (before ν 2004) Best fit 8 B flux: 5.21 x 10 6 /cm 2 /sec ∆ m 2 =6.3x10 -5 eV 2 , tan 2 θ =0.55 SK only with BP2000 flux and error constraint Best fit 8 B flux: 4.84 x 10 6 /cm 2 /sec Energy correlated systematic error

  11. Oscillation analysis ( ) − ρ δ δ δ bin d 2 = ∑ N 2 2 2 L χ + + + − ∆ 2 i i B S R 2 log σ σ σ σ timevar 2 2 2 2 = i 1 i B S R Energy correlated Spectrum Time variation systematic error β + η Data b h = ρ = i i i d , + i i 8 SSM SSM B hep f i i i ( ) ( ) ∆ θ ∆ θ 8 osc 2 2 osc 2 2 B m , tan hep m , tan = = i i b , h + + i i 8 SSM SSM 8 SSM SSM B hep B hep i i i i ( ) ( ) ( ) ( ) δ δ δ = δ × δ × δ B S R f , , f f f Β Β i S R i i S i R 8 B spec. energy energy shape scale resolution Function for energy correlated systematic errors

  12. Flux independent excluded region

  13. assuming fixed Allowed region 5.05x10 6 /cm 2 s total 8 B Flux: BP2000 8 B flux

  14. BP2000 total 8 B Flux: 5.05x10 6 /cm 2 s BP2004 total 8 B Flux: 5.79x10 6 /cm 2 s

  15. BP2000 total 8 B Flux: BP2004 5.05x10 6 /cm 2 s total 8 B Flux: 5.79x10 6 /cm 2 s BP2004 BP2000 total 8 B Flux: total 8 B Flux: 5.79x10 6 /cm 2 s 5.05x10 6 /cm 2 s Michael Smy, UC Irvine

  16. Analysis of lower energy region in SK-I Vertex position distribution of background (4.5 – 5.0 MeV) Wall Z after previous cuts R Events Events Rn before cuts Center after previous cuts Water is supplied from bottom (same method as above 5.0MeV) Bottom Z(cm) Top R²(cm²) � Apply tighter cuts to reduce external background. � Use improved vertex reconstruction program. � Remove high radon periods. � Select period when trigger eff. for 4.5-5.0MeV is >95%. (466days, Sep.1999-July 2001)

  17. Analysis of lower energy region in SK-I Direction to the sun Solar neutrino energy spectrum 1496 days 629 +128 -126(sta.) signals 68016+-262 bg events 4.5 – 5.0 MeV data 466 days Flux: 3.13 ± 0.63(sta.) ± 0.16(sys.) /cm 2 /sec 4.5-5.0 MeV data is consistent with previous results.

  18. SK-II data

  19. Detector calibration in SK- -II II Detector calibration in SK • PMT relative gain calibration by using Ni(n, γ )Ni source and an uniform light source (Xe-scintillation ball). • Timing calibration by N 2 -DYE laser ball. Energy distributions LINAC calibration data were taken at 6 positions. Tail due to 2 electrons

  20. SK- -II detector performance II detector performance SK ( ) ( LINAC calibration ) LINAC calibration Energy resolution Vertex resolution ~20% at 10 MeV ~100cm at 10 MeV Angular resolution Absolute energy calibration ± 2% ~28deg. at 10 MeV MC tuning is in progress.

  21. N calibration 16 N calibration 16 Energy spectrum (a) (b) (c) w/o trigger E =14.2 MeV n 16 16 O(n,p) N 2 m n n n 16 n N n n with trigger correction DT generator n+ 16 O → p+ 16 N D+T → He+n Zenith angle dependence of energy scale (14.2 MeV) ± 0.5%

  22. SK- -II Trigger II Trigger SK LE trigger: Number of hit PMTs within 200nsec: N 200ns > 14 SLE trigger: N 200ns > 10 (added after July 15, 2003) Online vertex reconstruction and fiducial volume cut are applied to SLE events. SLE LE Trigger rate: LE: ~70 Hz SLE: ~1100 Hz E > 6.5 MeV for SLE trigger 100% efficient for E > 8.0 MeV for LE trigger

  23. SK- -II preliminary results II preliminary results SK Dec.24,2002 – March 25, 2004 Direction to the sun 325 days 8 – 20 MeV +82 Solar ν signal = 2161 (stat.) events -80 Flux= 2.38 ± 0.09 (stat.) (Systematic error (x10 6 /cm 2 /s) under study) (cf. SK-I result: 2.35 ± 0.02(stat.) ± 0.08(sys.))

  24. SK- -II: Day II: Day- -Night difference Night difference SK 325 days (Dec.24,2002 – March 25, 2004) Events/day/kton/bin Events/day/kton/bin Day Night Flux= 2.34 ± 0.13 (stat.) Flux= 2.40 ± 0.12 (stat.) cos θ sun cos θ sun (D-N) = - 0.025 ± 0.075 (stat.) A DN = (D+N)/2 (Systematic error under study)

  25. SK- -II energy spectrum II energy spectrum SK SK-I average Consistent with SK-I

  26. Time variation Time variation

  27. Future prospects towards SK-III Possibility of detecting spectrum distortion ν e survival probability Recoil electron spectrum 0.55 ~10% upturn Data/SSM(BP2004) should be seen Lower threshold 0.5 reduce stat. error P( ν e → ν e ) reduce sys. error sys. error 0.45 tan 2 ( θ ) ∆ m 2 (eV 2 ) 6.3 x 10 -5 0.55 0.4 0.38 4.8 x 10 -5 0.38 7.2 x 10 -5 10.0 x 10 -5 0.38 0.28 7.2 x 10 -5 0.35 5 7.5 10 12.5 20 E ν (MeV) Energy(MeV)

  28. Future prospects towards SK-III Significance of spectrum distortion tan 2 ( θ ) ∆ m 2 (eV 2 ) Current breakdown of correlated 0.28 7.2 x 10 -5 systematic errors 0.38 10 x 10 -5 7.2 x 10 -5 0.38 4.8 x 10 -5 0.38 0.55 6.3 x 10 -5 Significance ( σ ) 3 σ level Solar+KamLAND best fit Live time (years) � Better Energy scale calibration Assumptions: (~ ± 0.4%) is needed. Correlated systematic error: x 0.5 � Better 8 B spectrum shape from 4.0-5.5MeV background: x 0.3 nuclear physics is needed. (same BG as SK-I above 5.5MeV)

  29. Conclusion Conclusion � High statistics solar neutrino data has been taken at Super- Kamiokade. � Day/night asymmetry is obtained by unbinned method : A DN = -1.8 ± 1.6 +1.3/-1.2 %. � Energy spectrum: SK prefers smaller ∆ m 2 and larger tan 2 θ compared with global best fit parameters. � Assuming 8 B total flux of the SSM predictions, LMA solution is preferred. � Solar neutrino signal in 4.5 – 5.0 MeV (total energy) bin was newly obtained. � Preliminary results from SK-II are consistent with SK-I. � Hope to see definite energy spectrum distortion in SK-III, if it should be there.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend