precision calculations of semileptonic b decays
play

Precision calculations of semileptonic B decays Yu-Ming Wang - PowerPoint PPT Presentation

Precision calculations of semileptonic B decays Yu-Ming Wang Technische Universitt Mnchen The 10th TeV Physics Workshop 09. 08. 2015 Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 1 / 22 Where do we stand now? Big success of the SM and


  1. Precision calculations of semileptonic B decays Yu-Ming Wang Technische Universität München The 10th TeV Physics Workshop 09. 08. 2015 Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 1 / 22

  2. Where do we stand now? Big success of the SM and no evidences of NP = ⇒ Precision physics (Higgs, flavor ...). LQ1(ej) x2 stopped gluino (cloud) LQ1(ej)+LQ1( ν j) stopped stop (cloud) Long-Lived LQ2( μ j) x2 HSCP gluino (cloud) Leptoquarks LQ2( μ j)+LQ2( ν j) HSCP stop (cloud) Particles LQ3( ν b) x2 q=2/3e HSCP q=3e HSCP LQ3( τ b) x2 neutralino, ctau=25cm, ECAL time LQ3( τ t) x2 LQ3(vt) x2 0 1 2 3 4 0 1 2 3 4 j+MET, SI DM=100 GeV, Λ j+MET, SD DM=100 GeV, Λ RS1( γγ ), k=0.1 RS Gravitons γ +MET, SI DM=100 GeV, Λ RS1(ee,uu), k=0.1 Dark Matter γ +MET, SD DM=100 GeV, Λ RS1(jj), k=0.1 l+MET, ξ =+1, SI DM=100 GeV, Λ RS1(WW → 4j), k=0.1 l+MET, ξ =+1, SD DM=100 GeV, Λ 0 1 2 3 4 l+MET, ξ =-1, SI DM=100 GeV, Λ CMS Preliminary l+MET, ξ =-1, SD DM=100 GeV, Λ 0 1 2 3 4 Heavy Gauge SSM Z'( ττ ) Bosons SSM Z'(jj) ADD ( γγ ), nED=4, MS Large Extra SSM Z'(bb) ADD (ee, μμ ), nED=4, MS Dimensions SSM Z'(ee)+Z'(µµ) ADD (j+MET), nED=4, MD ADD ( γ +MET), nED=4, MD SSM W'(jj) QBH, nED=4, MD=4 TeV SSM W'(lv) NR BH, nED=4, MD=4 TeV SSM W'(WZ → lvll) Jet Extinction Scale SSM W'(WZ → 4j) String Scale (jj) 0 1 2 3 4 0 2 4 5 7 9 Excited Compositeness Fermions e* (M= Λ ) dijets, Λ + LL/RR μ * (M= Λ ) dijets, Λ - LL/RR q* (qg) dimuons, Λ + LLIM q* (q γ ) dimuons, Λ - LLIM b* dielectrons, Λ + LLIM 0 1 2 3 4 dimuons, Λ - LLIM single e, Λ HnCM coloron(jj) x2 Multijet single μ , Λ HnCM coloron(4j) x2 gluino(3j) x2 inclusive jets, Λ + Resonances gluino(jjb) x2 inclusive jets, Λ - 0 1 2 3 4 0 4 8 13 17 21 CMS Exotica Physics Group Summary – ICHEP , 2014 Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 2 / 22

  3. Triumphs of flavor physics 1963: concept of flavor mixing [Cabibbo]. 1973: quark-flavor mixing with 3 generations incudes CP violation [KM mechanism]. 1974: prediction of the charm mass from K 0 − K 0 mixing. [Gaillard and Lee]. 1987: prediction of the top mass from B 0 − B 0 mixing observed by AUGUS (DESY) and UA1 (CERN). 2001: large CP violation in B meson decays [BaBar and Belle]. 2004: direct CP violation in B meson decays [BaBar and Belle]. Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 3 / 22

  4. Why flavor matters in the LHC era? Indirect probe of BSM physics beyond direct reach. ◮ EFT parametrization of BSM physics: 1 dim 4 + ∑ Λ n − 4 Q ( n ) L = L SM z n n > 4 ∑ . ( i ) i i ◮ Dimension- n operator Q ( n ) is SU ( 3 ) C × SU ( 2 ) L × U ( 1 ) Y gauge invariant. i ◮ Higher dimension operator Q ( n ) suppressed by the large scale. i ◮ Two examples: (a) leading NP operators of D = 6 for ∆ F = 2 processes � � � � Q ( 6 ) q i Γ A q j q i Γ B q j AB , ij = ⊗ , ¯ ¯ 1.5 (b) unitarity of the CKM triangles. excluded at CL > 0.95 excluded area has CL > 0.95 γ 1.0 ∆ m & ∆ m s d sin 2 β 0.5 ∆ m d ε α K γ β η 0.0 α V α ub -0.5 ε -1.0 K CKM γ sol. w/ cos 2 β < 0 f i t t e r (excl. at CL > 0.95) Winter 14 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 ρ Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 4 / 22

  5. Why flavor matters in the LHC era? Find the underlying principle for the flavor structure. Suggestive pattern of masses and mixings. S. Stone, 1212.6374 ◮ Why are the quark masses (except the top) so small compared with the vev? ◮ Why is the CKM matrix hierarchical? ◮ Why is CKM so different from the PMNS? ◮ Why do we have three families? ◮ Sources of flavor symmetry and violation? Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 5 / 22

  6. Why flavor matters in the LHC era? Excellent opportunities to explore the strong interaction dynamics: SM/CKM New Physics y Hadronic B 0 Penguins B  B  CP violation CP i l ti Mixing Semi-leptonic p Tree B s B Lifetime decays decays D 0 B c Radiative Pure-leptonic D D s Penguins Penguins Electroweak El t k  b D  decays Penguins   LFV New     K  K 0 K Production Production resonances resonances QCD factorization theorems, effective field theories, resummation techniques, non-perturbative QCD dynamics, QCD sum rules. Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 6 / 22

  7. Theory tools for precision flavor physics New Physics: L NP Aim: � f | Q i | ¯ B � = ? ↓ QCD factorization EW scale ( m W ): L SM + L D > 4 [BBNS approach]. ↓ TMD factorization. SCET factorization. Heavy-quark scale ( m b ): L eff = − G F 2 ∑ √ C i Q i + L eff , D > 6 (Light-cone) QCD i sum rules. ↓ Lattice QCD. QCD scale ( Λ QCD ) Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 7 / 22

  8. Ten years of flavour factories 2004 = ⇒ 2014 1.5 1.5 excluded at CL > 0.95 excluded area has CL < 0.05 excluded area has CL > 0.95 γ ∆ m d 1 1.0 ∆ m & ∆ m sin 2 β sin 2 β d s sin 2 β ∆ m s & ∆ m d 0.5 0.5 m ∆ d B → ρρ ε α α K ε K β γ β γ η 0.0 0 η α | V ub /V cb | V α ub -0.5 -0.5 ε K ε -1.0 K -1 CKM γ sol. w/ cos 2 β < 0 f i t t e r CK M (excl. at CL > 0.95) Winter 14 f i t t e r B → ρρ Winter 2004 -1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1 -0.5 0 0.5 1 1.5 2 ρ ρ Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 8 / 22

  9. Anomalies in FCNC processes A few “anomalies" exist in B → K ( ∗ ) ℓ + ℓ − . [LHCb-CONF-2015-002] 1 ' 5 P ) ) LHCb µ − e − LHCb-TALK-2014-108 preliminary µ + e + 0.5 K + K + SM from DHMV [1407.8526] → → 0 B + B + ( ( r r B B -0.5 = 2.6 σ R K -1 0 5 10 15 2 2 [GeV / 4 ] q c Indication of BSM physics or ignorance of QCD dynamics? P ′ 5 anomaly below 6GeV 2 more serious [power corrections]. Violation of lepton flavor universality [QED corrections]. Need more data and theoretical efforts. Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 9 / 22

  10. | V ub | puzzle 3 σ tension between exclusive and inclusive | V ub | . CLEO (E ) e ± 4.28 0.50 + 0.31 - 0.36 2 2 BELLE sim. ann. (m , q 2 ) Khodjamirian et al. q < 12 GeV X ± 4.49 0.47 + 0.28 - 0.30 ± BELLE (E ) 3.41 0.06 + 0.37 - 0.32 e ± 4.93 0.46 + 0.27 - 0.29 BABAR (E ) e 2 2 ± Ball-Zwicky q < 16 GeV 4.54 0.26 + 0.27 - 0.33 max BABAR (E , s ) e h ± ± 3.58 0.06 + 0.59 - 0.40 4.53 0.22 + 0.33 - 0.38 BELLE multivariate (p*) ± 4.49 0.27 + 0.20 - 0.22 BABAR (m <1.55) 2 2 HPQCD q > 16 GeV X ± 4.30 0.20 + 0.28 - 0.27 ± BABAR (m <1.7) 3.52 0.08 + 0.61 - 0.40 X ± ± 4.04 0.22 0.23 2 BABAR (m <1.7, q >8) X 2 2 ± FNAL/MILC q > 16 GeV 4.30 0.23 + 0.26 - 0.28 BABAR (P + <0.66) ± ± 4.15 0.25 + 0.28 - 0.27 3.36 0.08 + 0.37 - 0.31 BABAR (p*>1GeV) ± 4.32 0.24 + 0.19 - 0.21 BABAR (p*>1.3GeV) ± 4.32 0.27 + 0.20 - 0.21 Average +/- exp + th. - th. HFAG ± 4.45 0.16 + 0.21 - 0.22 HFAG χ 2 /dof = 9.0/11 (CL = 62.00 %) PDG 2014 Bosch, Lange, Neubert and Paz (BLNP) Phys.Rev.D72:073006,2005 PDG14 2 4 6 0 2 4 × -3 -3 |V | [ 10 ] |V | [10 ] ub ub BSM physics or ignorance of the strong interaction dynamics? Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 10 / 22

  11. Semileptonic B → π ℓ ν decays ν ℓ Hadronic matrix element: � � ℓ p B + p − m 2 B − m 2 B ( p + q ) � = f + B π ( q 2 ) π u γ µ b | ¯ � π ( p ) | ¯ q q 2 b u µ B π ( q 2 ) m 2 B − m 2 π + f 0 q µ . B ¯ π q 2 Lepton spectrum: G 2 F | V ub | 2 d Γ ( q 2 − m 2 l ) 2 | = � p π | 24 π 3 q 4 m 2 dq 2 B �� � � 1 + m 2 B π ( q 2 ) | 2 + 3 m 2 p π | 2 | f + π ) 2 | f 0 l m 2 8 q 2 ( m 2 l B − m 2 B π ( q 2 ) | 2 × B | � . q 2 Still the best way to determine | V ub | exclusively in the continuum approach! Λ b → p ℓ ν decays also become important now [ LHCb, arXiv:1504.01568]. � � × 10 − 3 . | V ub | = 3 . 27 ± 0 . 23 Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 11 / 22

  12. B → π form factors from the B -meson LCSR Starting point: vacuum-to- B -meson correlation function � � ¯ � d 4 x e ip · x � 0 | T | ¯ Π µ ( p , q ) = d ( x ) n / γ 5 u ( x ) , ¯ u ( 0 ) γ µ b ( 0 ) B ( p + q ) � n · p ) n µ + � = Π ( n · p , ¯ Π ( n · p , ¯ n · p ) ¯ n µ , m 2 B + m 2 π − q 2 p + q ≡ m B v = m B n · p = , n · p ∼ O ( Λ QCD ) , 2 ( n + ¯ n ) . ¯ m B Inserting complete set of pion states → hadronic sum: B B � h π h � Π ( n · p , ¯ n · p ) = π π h π p p q q � n · p � � + ∞ ρ h ( n · p , ω ′ ) d ω ′ � f π ( n · p ) m B f + B π ( n · p )+ f 0 B π ( n · p ) ω ′ − ¯ 2 ( m 2 π − p 2 ) n · p m B ω s � �� � relative sign changes for Π ( n · p , ¯ n · p ) Yu-Ming Wang (TUM) B decays Beijing, 09. 08. 2015 12 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend