puzzles in b decays
play

Puzzles in B Decays Alakabha Datta University of Mississippi April - PowerPoint PPT Presentation

Puzzles in B Decays Alakabha Datta University of Mississippi April 21, 2017 WIN 2017, Irvine Alakabha Datta ( UMiss ) April 21, 2017 1 / 42 Puzzles in B Decays Outline of Talk In recent times there have been some anomalies in B decays that


  1. Puzzles in B Decays Alakabha Datta University of Mississippi April 21, 2017 WIN 2017, Irvine Alakabha Datta ( UMiss ) April 21, 2017 1 / 42 Puzzles in B Decays

  2. Outline of Talk In recent times there have been some anomalies in B decays that indi- cate lepton non-universal new physics. These are in semileptonic b → c τ ¯ ν τ transitions: R D ( ∗ ) puzzle. These are in semileptonic b → s ℓ + ℓ − ( l = µ, e ) transitions: P ′ 5 and R K , R K ( ∗ ) puzzles. BR of b → s µ + µ − modes are lower. Alakabha Datta ( UMiss ) April 21, 2017 2 / 42 Puzzles in B Decays

  3. Outline of Talk Recently, LHCb announced LUV in measurement of R K ( ∗ ) I will focus on simultaneous explanation of the R D ( ∗ ) and R K , R K ( ∗ ) anomalies. Recent work shows how future measurements can distinguish among the models. Light new physics: GeV scale or 10-100 MeV mediators. Alakabha Datta ( UMiss ) April 21, 2017 3 / 42 Puzzles in B Decays

  4. R D ( ∗ ) puzzle − − − b / − W / W ’ H − V cb 0 B c (*) D G F � � � D ( ∗ ) ( p ′ ) | ¯ c γ µ (1 − γ 5 ) b | ¯ √ A SM = V cb B ( p ) � τγ µ (1 − γ 5 ) ν τ ¯ 2 B ( ¯ R ( D ∗ ) ≡ B ( ¯ B → D + τ − ¯ B → D ∗ + τ − ¯ ν τ ) ν τ ) R ( D ) ≡ ν ℓ ) . B ( ¯ B ( ¯ B → D + ℓ − ¯ B → D ∗ + ℓ − ¯ ν ℓ ) Alakabha Datta ( UMiss ) April 21, 2017 4 / 42 Puzzles in B Decays

  5. Experiments: R D ( ∗ ) puzzle Recently, the BaBar, Belle and LHCb have reported the following measurements : B ( ¯ B → D + τ − ¯ ν τ ) R ( D ) ≡ ν ℓ ) = 0 . 440 ± 0 . 058 ± 0 . 042 , B ( ¯ B → D + ℓ − ¯ B ( ¯ B → D ∗ + τ − ¯ ν τ ) R ( D ∗ ) ≡ ν ℓ ) = 0 . 332 ± 0 . 024 ± 0 . 018 . (1) B ( ¯ B → D ∗ + ℓ − ¯ Belle R ( D ) ≡ 0 . 375 ± 0 . 064 ± 0 . 026 , R ( D ∗ ) ≡ 0 . 293 ± 0 . 038 ± 0 . 015 , 0 . 302 ± 0 . 030 ± 0 . 011 . (2) LHCb R ( D ∗ ) ≡ 0 . 336 ± 0 . 027 ± 0 . 030 . R ( D ∗ ) ≡ 0 . 306 ± 0 . 016 ± 0 . 010 . (3) Alakabha Datta ( UMiss ) April 21, 2017 5 / 42 Puzzles in B Decays

  6. Average HFAG R ( D ) ≡ 0 . 397 ± 0 . 040 ± 0 . 028 R ( D ∗ ) ≡ 0 . 316 ± 0 . 016 ± 0 . 010 . (4) Theory R ( D ) ≡ 0 . 299 ± 0 . 011( FNAL / MILC ) , 0 . 300 ± 0 . 008( HPQCD ) ≡ 0 . 299 ± 0 . 003( arXiv : 1703 . 05330) R ( D ∗ ) ≡ 0 . 257 ± 0 . 003( arXiv : 1703 . 05330) . (5) R ( D ∗ ) is 3.3 σ from SM. R ( D ) is 1.9 σ from SM. Combined with co-relations is 4 σ deviation. Alakabha Datta ( UMiss ) April 21, 2017 6 / 42 Puzzles in B Decays

  7. ¯ B → D ( ∗ ) ℓ − ¯ ν ℓ In the ratios R ( D ( ∗ ) ) the form factors effects (largely) cancel, V cb cancels and experimental systematic effects cancel. The SM has a flavor symmetry SU (3) Q × SU (3) U × SU (3) D × SU (3) L × SU (3) E in the absence of Yukawa interactions. W couples universally to all lepton generations. The results imply lepton non-universal interactions. Alakabha Datta ( UMiss ) April 21, 2017 7 / 42 Puzzles in B Decays

  8. Model independent NP analysis (See for example: Datta, Duraisamy, Ghosh) Effective Hamiltonian for b → cl − ¯ ν l with Non-SM couplings. The NP has to be LUV. 4 G F V cb � c γ µ P L b ] [¯ l γ µ P L ν l ] + V R [¯ c γ µ P R b ] [¯ H eff = √ (1 + V L ) [¯ l γ µ P L ν l ] 2 � cP L b ] [¯ cP R b ] [¯ c σ µν P L b ] [¯ + S L [¯ lP L ν l ] + S R [¯ lP L ν l ] + T L [¯ l σ µν P L ν l ] The NP can be probed via distributions and other related decays. Alakabha Datta ( UMiss ) April 21, 2017 8 / 42 Puzzles in B Decays

  9. B → D ( ∗ ) τν τ in SM + NP, Helicity Amplitudes Decay Distribution described by Helicity Amplitudes 1 � ( m 2 B − m 2 D ∗ − q 2 )( m B + m D ∗ ) A 1 ( q 2 ) H 0 = � q 2 2 m D ∗ − 4 m 2 B | p D ∗ | 2 � m B + m D ∗ A 2 ( q 2 ) (1 − g A ) , √ 2( m B + m D ∗ ) A 1 ( q 2 )(1 − g A ) , H � = √ 2 2 m B V ( q 2 ) H ⊥ = − ( m B + m D ∗ ) | p D ∗ | (1 + g V ) , 2 m B | p D ∗ | A 0 ( q 2 ) H t = (1 − g A ) , � q 2 − 2 m B | p D ∗ | A 0 ( q 2 ) H P = ( m b ( µ ) + m c ( µ )) g P . Alakabha Datta ( UMiss ) April 21, 2017 9 / 42 Puzzles in B Decays

  10. B → D ( ∗ ) τν τ in SM The helicity amplitudes and consequently the NP couplings can be extracted from an angular distribution and compared with models. l D y x W D* * l z B Distribution includes CPV terms which are clean probes of NP without form factor issues. If we observe τ decay then we can measure τ polarization and CPV. Alakabha Datta ( UMiss ) April 21, 2017 10 / 42 Puzzles in B Decays

  11. Other Decays NP can be constrained from other decays have the same quark tran- sition as R D ( ∗ ) : B c → τ − ¯ ν τ ( Alonso, Grinstein, Camalich) , B c → J /ψτ − ¯ ν τ , b → τν X (LEP), Λ b → Λ c τ ¯ ν τ . Measurements in Λ b → Λ c τ ¯ ν τ can further constrain the NP parameter space. (Datta:2017aue, Shivashankara:2015cta). B [Λ b → Λ c τ ¯ ν τ ] R (Λ c ) = B [Λ b → Λ c ℓ ¯ ν ℓ ] R (Λ c ) SM + NP R Ratio = . Λ c R (Λ c ) SM Λ b → Λ c form factors are calculated from lattice QCD (Datta:2017aue, Detmold:2015aaa). Alakabha Datta ( UMiss ) April 21, 2017 11 / 42 Puzzles in B Decays

  12. R Ratio = 1 . 3 ± 3 × 0 . 05 Λ c Only g P present Only g s present 4 1.0 2 0.5 Im [ g P ] Im [ g s ] 0 0.0 - 0.5 - 2 - 1.0 - 4 - 1.5 - 1.0 - 0.5 0.0 0.5 - 4 - 2 0 2 Re [ g s ] Re [ g P ] Only g L present Only g R present Only g T present 1.5 3 3 1.0 2 2 1 1 0.5 Im [ g L ] Im [ g R ] Im [ g T ] 0 0 0.0 - 1 - 1 - 0.5 - 2 - 2 - 1.0 - 3 - 3 - 1.5 - 4 - 3 - 2 - 1 0 1 2 - 2 - 1 0 1 2 3 4 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 0.0 0.5 Alakabha Datta ( UMiss ) April 21, 2017 12 / 42 Puzzles in B Decays Re [ g L ] Re [ g R ] Re [ g T ]

  13. Interesting Facts R ( D ) exp R Ratio = = 1 . 30 ± 0 . 17 , D R ( D ) SM R ( D ∗ ) exp R Ratio = = 1 . 25 ± 0 . 08 . D ∗ R ( D ∗ ) SM If NP is just V − A then ≡ R expt ≡ R expt = | 1 + V L | 2 = R ratio R ratio D D ∗ . D D ∗ R SM R SM D D ∗ In this case the distributions are just scaling of the SM distributions. Alakabha Datta ( UMiss ) April 21, 2017 13 / 42 Puzzles in B Decays

  14. b → s µ + µ − Anomaly − α G F H eff ( b → s ℓ ¯ V tb V ∗ � ¯ � s L γ µ b L ) � √ ℓ ) = C 9 (¯ ℓγ µ ℓ ts 2 π s L γ µ b L ) � ¯ ℓγ µ γ 5 ℓ �� + C 10 (¯ , − α G F V tb V ∗ s L γ µ b L ) νγ µ (1 − γ 5 ) ν � � H eff ( b → s ν ¯ ν ) = √ ts C L (¯ ¯ , 2 π e H eff ( b → s γ ∗ ) s σ µν ( m s P L + m b P R ) b ] F µν = 16 π 2 [¯ C 7 Alakabha Datta ( UMiss ) April 21, 2017 14 / 42 Puzzles in B Decays

  15. Some Facts At the m b scale C 9 ∼ − C 10 = 4 . 2 while C 7 ∼ 0 . 3 and so semileptonic operators usually dominate. NP contribution from C 7 is not LUV. Low q 2 region is clean. Factorization results hold and Form Factors can satisfy certain symmetry relations(SCET). For very low q 2 the photon pole may dominates over the semileptonic operators. b → s ℓ + ℓ − can come from charm resonance. b → sJ /ψ ( → ℓℓ ). So charm resonance region is cut out from measurement. Alakabha Datta ( UMiss ) April 21, 2017 15 / 42 Puzzles in B Decays

  16. P ′ 5 in B 0 d → K ∗ µ + µ − d 4 (Γ + ¯ 1 Γ) d (Γ + ¯ Γ) / d q 2 d q 2 d � Ω 9 � 4 (1 − F L ) sin 2 θ k + F L cos 2 θ k 3 = 32 π 4 (1 − F L ) sin 2 θ k cos 2 θ l + 1 − F L cos 2 θ k cos 2 θ l + S 3 sin 2 θ k sin 2 θ l cos 2 φ + S 4 sin 2 θ k sin 2 θ l cos φ + S 5 sin 2 θ k sin θ l cos φ 3 A FB sin 2 θ k cos θ l + S 7 sin 2 θ k sin θ l sin φ + 4 + S 8 sin 2 θ k sin 2 θ l sin φ + S 9 sin 2 θ k sin 2 θ l sin 2 φ � . (6) Alakabha Datta ( UMiss ) April 21, 2017 16 / 42 Puzzles in B Decays

  17. Optimal observables. When E K is large, small q 2 , in leading order in SCET these observables are free from form factors. Corrections are ∼ O ( 1 E K ). m 2 B + m 2 K ( ∗ ) − q 2 E K ( ∗ ) = E K ( ∗ ) ∼ m B , 2 m B when q 2 small. 2 S 3 (1 − F L ) = A (2) P 1 = T , P 2 = 2 A FB (1 − F L ) , 3 − S 9 P 3 = (1 − F L ) , (7) S 4 , 5 , 8 P ′ 4 , 5 , 8 = , � F L (1 − F L ) S 7 P ′ 6 = . � F L (1 − F L ) Alakabha Datta ( UMiss ) April 21, 2017 17 / 42 Puzzles in B Decays

  18. LHC 0 . 6 SM (ABSZ/flavio) SM (ABSZ/flavio) 0 . 75 LHCb LHCb 0 . 4 � P 1 � ( B 0 → K ∗ 0 µ + µ − ) 4 � ( B 0 → K ∗ 0 µ + µ − ) CMS 0 . 50 ATLAS ATLAS 0 . 2 0 . 25 0 . 0 0 . 00 − 0 . 2 − 0 . 25 − 0 . 4 − 0 . 50 � P ′ − 0 . 6 − 0 . 75 − 0 . 8 − 1 . 00 0 5 10 15 0 5 10 15 q 2 [GeV 2 ] q 2 [GeV 2 ] SM (ABSZ/flavio) 0 . 6 LHCb 5 � ( B 0 → K ∗ 0 µ + µ − ) 0 . 4 ATLAS CMS 0 . 2 0 . 0 − 0 . 2 − 0 . 4 − 0 . 6 � P ′ − 0 . 8 − 1 . 0 0 5 10 15 q 2 [GeV 2 ] Alakabha Datta ( UMiss ) April 21, 2017 18 / 42 Puzzles in B Decays

  19. NP Explanation Effective theory :Fits to NP semileptonic operators. Perform a model-independent analysis of ¯ s ℓ + ℓ − , considering NP b → ¯ ℓ O ′ ℓ ), where O and O ′ span all Lorentz s O b )(¯ operators of the form (¯ structures ( Descotes-Genon, Matias, Virto, arXiv:1307.5683 ). NP in ∆ C 9 µ Can come from Z ′ models or Leptoquark Models. Can be induced by four quark operators. Alakabha Datta ( UMiss ) April 21, 2017 19 / 42 Puzzles in B Decays

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend