leptonic decays in 2hdm
play

Leptonic decays in 2HDM Maria Krawczyk, Warsaw U. with David Temes - PowerPoint PPT Presentation

Leptonic decays in 2HDM Maria Krawczyk, Warsaw U. with David Temes hep-ph/0410248 [EPJC 44(2005)435] Outlook The leptonic tau decays Two Higgs Doublet Model (CP conservation) Large loop corrections for leptonic tau decays


  1. Leptonic τ decays in 2HDM Maria Krawczyk, Warsaw U. with David Temes – hep-ph/0410248 [EPJC 44(2005)435] Outlook • The leptonic tau decays • Two Higgs Doublet Model (CP conservation) • Large loop corrections for leptonic tau decays • Constraints on masses and couplings for neutral and charged Higgs bosons M. Krawczyk 1 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  2. � ✁ ✂ ✁ ✄ ☎ The τ lepton A unique laboratory to test the Standard Model and beyond ✆✞✝ The coupling of the τ lepton to the W : g τ = coupling ( τν τ W ) In Standard Model → lepton universality: g e = g µ = g τ • Radiative corrections in 2HDM –Rosiek ’90 • A τ puzzle ’92: Data on leptonic branching ratio too low by 2 . 5 σ than expected in SM → “Tau decay in the two Higgs doublet model”: Guth, Hoang, Kuhn ’92 → “Can a second Higgs doublet diminish the leptonic tau decay width?” Hollik, Sack ’92, • Precise data in agreement with SM - can be used to constrain 2HDM M. Krawczyk 2 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  3. 2HDM models without and with CP violation 2HDM Potential with quartic and quadratic terms separated: 2 λ 1 ( φ † 1 φ 1 ) 2 + 1 2 λ 2 ( φ † 2 φ 2 ) 2 + λ 3 ( φ † 1 φ 1 )( φ † 2 φ 2 ) + λ 4 ( φ † 1 φ 2 )( φ † V = 1 2 φ 1 ) 1 φ 2 ) 2 + h . c . λ 5 ( φ † ( λ 6 ( φ † 1 φ 1 ) + λ 7 ( φ † 2 φ 2 ))( φ † + 1 � � � � + 1 φ 2 ) + h . c . 2 hard 11 ( φ † 12 ( φ † 22 ( φ † − 1 � � � � m 2 m 2 soft + m 2 1 φ 1 ) + 1 φ 2 ) + h . c . 2 φ 2 ) 2 In general 14 parameters: λ 1 , λ 2 , λ 3 , λ 4 , λ 5 , λ 6 , λ 7 , m 2 11 , m 2 22 , m 2 12 The ( φ 1 , φ 2 ) mixing ↔ Z 2 symmetry: φ 1 → − φ 1 , φ 2 → φ 2 (or 1 ↔ 2) Z 2 -symmetry if ⇒ λ 6 = λ 7 = m 2 12 = 0 soft violation of Z 2 symmetry governed by µ 2 ∼ Re m 12 Lee, Diaz-Cruz, Mendez, Haber, Pomarol, Barroso, Santos, Hollik, Djouadi, Illana, Branco,Gunion, Grzadkowski,Akeroyd, Arhrib, Dubnin, Froggatt, Sher, Pilaftsis, Carena.. Kalinowski, Zerwas, Choi, Kanemura, Okada,. M. Krawczyk 3 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  4. Symmetries of Two Higgs Doublet Model I. F. Ginzburg, M. Krawczyk, hep-ph/0408011 (PRD’05); I. F. Ginzburg at PLC2005 • 2HDM contains two fields, φ 1 and φ 2 , with identical quantum numbers: weak isodoublets ( T = 1 / 2) with hypercharges Y = +1 • Global transformations which mix these fields and change the relative phases are allowed without changing physical picture • One of the reason for introducing 2HDM was to describe phenomenon of CP violation Lee’ 73; Glashow and Weinberg’77- CP violation and the flavour changing neutral currents (FCNC) can be naturally suppressed by imposing in Lagrangian a Z 2 symmetry, that is the invariance of the Lagrangian under the interchange ( φ 1 ↔ φ 1 , φ 2 ↔ − φ 2 ) or ( φ 1 ↔ − φ 1 , φ 2 ↔ φ 2 ) . This symmetry forbids the φ 1 ↔ φ 2 transition. Branco, Rebelo’ 85 M. Krawczyk 4 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  5. Symmetries of 2HDM Weinberg, Glashow, ’77; Branco, Rebelo ’85 - ’05; Botella, Silva ’94, Botella, Nebot, Vives, Lavoura 95,04..Ginzburg, MK ’04, Ivanov’05, Haber, Gunion’05 Two fields with identical quantum numbers → mixing A global unitary transformation U(1)x SU(2): cos θ e iρ/ 2 sin θ e i ( τ − ρ/ 2) � φ ′ � � � � � φ 1 = e − iρ 0 1 − sin θ e − i ( τ − ρ/ 2) cos θ e − iρ/ 2 φ ′ φ 2 2 This transformation induces changes in parameters of L: i and m 2 ij → ( m ′ ) 2 λ i → λ ′ ij A space of Lagrangians with coordinates given by parameters of L... i and m 2 ij → ( m ′ ) 2 • A reparametrization transformation (RPaT) λ i → λ ′ ij - 3 parametrical group with parameters: ρ , θ , τ • A reparametrization invariance → a reparametrization equivalent space of L (3-dim subspace in 14-dim space) Physical observables invariant of the RPaT like masses. But not tan β ! • The rephasing transformation group - one parameter only ρ . M. Krawczyk 5 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  6. Reparametrization: Lagrangian and Z 2 symmetry The violation of the Z 2 symmetry allows for the φ 1 ↔ φ 2 transitions. • Exact Z 2 symmetry. λ 6 = λ 7 = m 2 12 = 0. Only λ 5 can be complex, by rephasing → λ 5 real. • A soft violation of Z 2 symmetry. Adding to the Z 2 symmetric 12 ( φ † Lagrangian the term m 2 1 φ 2 ) + h.c. , with a generally complex m 2 12 ; as before λ 5 can be made real by rephasing. • A hard violation of Z 2 symmetry. (Operator dimension 4) with generally complex parameters λ 6 , λ 7 are added to V with a softly broken Z 2 symmetry. The true hard violation of Z 2 - if V cannot be transformed to the case of Z 2 conservation, nor its weak violation. Remarks on CP The complex values of some of parameters in V provide a necessary condition for the CP violation in the Higgs sector. If V can be reparametrized so that all parameters became real - no CP violation is present. M. Krawczyk 6 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  7. Vacuum The extremes of the potential define the vacuum expectation values (v.e.v.’s) of the fields φ 1 , 2 � � ∂V ∂V � � = 0 , = 0 . (1) � � ∂φ 1 � ∂φ 2 � � φ 1= � φ 1 � , � φ 1= � φ 1 � , φ 2= � φ 2 � φ 2= � φ 2 � The U(1) QED symmetric one corresponds to the lower energy than the charged one (Diaz-Cruz, Mendez; Santos, Barroso, Velhinho, GK)   0 � � 1 , � φ 2 � = 1 0  . √ √ � φ 1 � = (2)  v 1 2 2 v 2 e iξ • The rephasing of fields shifts the phase difference ξ as ξ → ξ − ρ . (3) so, the phase difference ξ has no physical sense (Branco). • The ratio tan β = v 2 depends on reparametrization! v 1 M. Krawczyk 7 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  8. CP conservation: Higgs masses and couplings Physical content of the Higgs potential: h, H, A, H ± • Higgs masses - Two cases: masses of H + , A, H can be large due large µ 2 (decoupling) or large λ ′ s (nondecoupling) • Higgs trilinear couplings • Higgs quartic couplings Independent of the form of Higgs potential are: • couplings to gauge bosons: hWW , HWW , while AWW = AZZ = 0 • couplings to fermions (Yukawa) e.g. Model II: φ 1 → u -type fermions φ 2 → d -type fermions The relative “basic couplings”: g i j χ i j = i = h, H, A ; j = V, u, d g SM j j ) 2 = 1, for j = V, u, d eg. Σ i ( χ i Relations between relative couplings: M. Krawczyk 8 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  9. Existing constraints for 2HDM (II) CP conserv. 2HDM(II) with soft violation of Z 2 symmetry ( µ 2 term): ⇒ five Higgs bosons: h , H , A , H ± ⇒ 7 parameters: M h , M H , M A , M H ± , α, β , and µ 2 MODEL II (as in MSSM) Couplings (relative to SM): h A to W/Z: χ V = sin( β − α ) 0 � 1 − χ 2 to down quarks/leptons: χ d = χ V − V tan β − iγ 5 tan β � 1 − χ 2 to up quarks: χ u = χ V + V / tan β − iγ 5 / tan β For H couplings like for h with: sin( β − α ) ↔ cos( β − α ) and tan β → − tan β . For large tan β → enhanced couplings to d − type fermions (and τ, µ, e )! χ h V H + = cos( β − α ) - complementarity to hV V ! M. Krawczyk 9 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  10. DATA LEP • direct:( h ) Bjorken process Z → Zh , → sin( β − α ) ( hA ) pair prod. e + e − → hA , → cos( β − α ) ( h/A ) Yukawa process e + e − → bbh/A , ττh/A , → tan β ( H ± ) e + e − → H + H − via loop:( h/A, and H ± ) Z → h/Aγ Others exp. • via loop:( h/A ) Wilczek process Υ → h/Aγ loop: ( H ± ) b → sγ , → lower limit for M H ± leptonic tau decay → g-2 data , → upper limit for χ d Global fit • (all Higgses) Chankowski at al.,’99 (EPJC 11,661;PL B496,195) Cheung and Kong ’03 M. Krawczyk 10 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  11. Constraints from b → sγ - Gambino, Misiak’01 Strong constraints on new physics from ¯ B → X s γ The weighted average for BR γ ≡ BR[ ¯ B → X s γ ] BR exp = (3 . 23 ± 0 . 42) × 10 − 4 γ NLO prediction (Misiak, Gambino’01): M H + above 490 GeV (95%) 500 B → X s γ R b B-> τ ν B->X τ ν 400 DIRECT M H + [GeV] 300 TYPE II 2HDM 200 100 10 20 30 40 50 60 70 tan β Here mass limit 350 GeV corresponds to 99 % CL ! M. Krawczyk 11 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  12. Direct and undirect limits for charged Higgs boson - PDG2004 Tevatron and LEP limits (90 GeV) M. Krawczyk 12 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

  13. Neutral Higgs bosons - couplings to gauge boson, and mass exclusion Light h OR light A in agreement with current data hZZ: sin ( β − α ) and hAZ: cos ( β − α ) OPAL 100 100 m A [GeV] m A [GeV] Limit on k 0.4 ≤ tan β ≤ 58 90 90 OPAL 0.4 ≤ tan β ≤ 1.0  80 80 √ s = 91, 183-209 GeV 1.0 < tan β ≤ 58 70 70 1 expected 60 60 Γ Z constraint 50 50 Observed 40 40 -1 Expected 10 (CL=95%) 30 30 20 20 10 10 -2 10 0 0 10 -6 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 m h [GeV] m h [GeV] m S0 (GeV) Light scalar h → small k = sin 2 ( β − α ) ! M. Krawczyk 13 Leptonic tau decay in 2HDM • Flavour at LHC era • CERN, 07.03.2006

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend