lbnf dune and the hunt for leptonic
play

LBNF/DUNE and the Hunt for Leptonic Brookhaven National Lab CP - PowerPoint PPT Presentation

LBNF/DUNE and the Hunt for Leptonic CP Violation Mary Bishai LBNF/DUNE and the Hunt for Leptonic Brookhaven National Lab CP Violation Introduction FPCP 2016, 6-9 June 2016, Caltech CP in SM CPV and other New Physics Current


  1. LBNF/DUNE and the Hunt for Leptonic CP Violation Mary Bishai LBNF/DUNE and the Hunt for Leptonic Brookhaven National Lab CP Violation Introduction FPCP 2016, 6-9 June 2016, Caltech CP in ν SM CPV and other New Physics Current Experimental Mary Bishai Landscape Brookhaven National Lab LBNF/DUNE Conclusion June 8, 2016 1 / 41

  2. Outline LBNF/DUNE and the Hunt for Leptonic CP Violation 1 Introduction Mary Bishai Brookhaven CP in ν SM National Lab CPV and other New Physics Introduction CP in ν SM CPV and other New Physics 2 Current Experimental Landscape Current Experimental Landscape 3 LBNF/DUNE LBNF/DUNE Conclusion 4 Conclusion 2 / 41

  3. CP Violation in PMNS and CKM In 3-flavor mixing the degree of CP violation is determined by the LBNF/DUNE and the Hunt Jarlskog invariant: for Leptonic J PMNS ≡ 1 8 sin 2 θ 12 sin 2 θ 13 sin 2 θ 23 cos θ 13 sin δ CP . CP Violation CP NuFIT 2.1 (2016) Mary Bishai 15 Brookhaven NO, IO (LEM) National Lab NO, IO (LID) 10 Introduction 2 ∆χ CP in ν SM CPV and other 5 New Physics Current 0 Experimental 0.025 0.03 0.035 0.04 -0.04 -0.02 0 0.02 0.04 max = c 12 s 12 c 23 s 23 c 2 max sin δ CP Landscape J CP 13 s 13 J CP = J CP LBNF/DUNE (JHEP 11 (2014) 052, arXiv:1409.5439) Conclusion Given the current best-fit values of the ν mixing angles : ≈ 3 × 10 − 2 sin δ CP . J PMNS CP For CKM: J CKM ≈ 3 × 10 − 5 , CP despite the large value of δ CKM ≈ 70 ◦ . CP 3 / 41

  4. ν µ → ν e Oscillations in the 3-flavor ν SM In the ν 3-flavor model matter/anti-matter asymmetries in neutrinos LBNF/DUNE are best probed using ν µ / ¯ ν µ → ν e / ¯ ν e oscillations (or vice versa). With and the Hunt 31 = 0 . 03 and sin 2 θ 13 = 0 . 02, (M. Freund. Phys. Rev. terms up to second order in α ≡ ∆ m 2 21 / ∆ m 2 for Leptonic CP Violation D 64, 053003): P ( ν µ → ν e ) ∼ = P ( ν e → ν µ ) ∼ Mary Bishai = P 0 + P sin δ + P cos δ + P 3 Brookhaven ���� � �� � � �� � ���� θ 13 CP violating CP conserving solar oscillation National Lab where for oscillations in vacuum: Introduction CP in ν SM sin 2 θ 23 sin 2 2 θ 13 sin 2 (∆) , sin 2 (2 θ 13 ) CPV and other New Physics P 0 = ( A − 1) 2 Current Experimental 8 J cp Landscape α 8 J cp sin 3 (∆) , P sin δ = A (1 − A ) LBNF/DUNE α 8 J cp cot δ CP cos ∆ sin 2 (∆) , 8 J cp cot δ CP Conclusion = P cos δ A (1 − A ) xx α 2 cos 2 θ 23 sin 2 2 θ 12 sin 2 (∆) , sin 2 (2 θ 12 ) P 3 = A 2 and where ∆ = ∆ m 2 31 L / 4 E For ¯ ν µ → ¯ ν e , P sin δ → − P sin δ 4 / 41

  5. ν µ → ν e Oscillations in the 3-flavor ν SM In the ν 3-flavor model matter/anti-matter asymmetries in neutrinos LBNF/DUNE are best probed using ν µ / ¯ ν µ → ν e / ¯ ν e oscillations (or vice versa). With and the Hunt 31 = 0 . 03 and sin 2 θ 13 = 0 . 02, (M. Freund. Phys. Rev. terms up to second order in α ≡ ∆ m 2 21 / ∆ m 2 for Leptonic CP Violation D 64, 053003): P ( ν µ → ν e ) ∼ = P ( ν e → ν µ ) ∼ Mary Bishai = P 0 + P sin δ + P cos δ + P 3 Brookhaven ���� � �� � � �� � ���� θ 13 CP violating CP conserving solar oscillation National Lab where for oscillations in matter with constant density: Introduction CP in ν SM sin 2 θ 23 sin 2 2 θ 13 CPV and other New Physics ( A − 1) 2 sin 2 [( A − 1)∆] , P 0 = Current Experimental 8 J cp Landscape P sin δ = α A (1 − A ) sin ∆ sin( A ∆) sin[(1 − A )∆] , LBNF/DUNE α 8 J cp cot δ CP Conclusion = cos ∆ sin( A ∆) sin[(1 − A )∆] , P cos δ A (1 − A ) α 2 cos 2 θ 23 sin 2 2 θ 12 sin 2 ( A ∆) , P 3 = A 2 and where √ ∆ = ∆ m 2 2 G F N e 2 E / ∆ m 2 31 L / 4 E and A = 31 . For ¯ ν µ → ¯ ν e , P sin δ → − P sin δ 5 / 41

  6. ν µ → ν e Oscillations in the 3-flavor ν SM LBNF/DUNE The ν µ → ν e probability maxima due to the atmospheric oscillation and the Hunt scale occur at for Leptonic CP Violation � π � L ( km ) (2 n − 1) 515 km = ≈ (2 n − 1) × Mary Bishai 1 . 27 × ∆ m 2 31 ( eV 2 ) E n ( GeV ) 2 GeV Brookhaven National Lab (a) Electron Neutrino Appearance Probabilty vs. L/E 0.2 ) e Introduction ν δ 0.18 Vacuum oscillations, all terms, = 0 → cp CP in ν SM µ θ 2 sin 2 term only CPV and other 0.16 ν P( 13 New Physics 0.14 Solar oscillation term only Current 0.12 Experimental Landscape 0.1 LBNF/DUNE 0.08 0.06 Conclusion 0.04 0.02 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Neutrino Energy/Baseline (GeV/km) 6 / 41

  7. ν µ → ν e Oscillations in the 3-flavor ν SM LBNF/DUNE The ν µ → ν e probability maxima due to the atmospheric oscillation and the Hunt scale occur at for Leptonic CP Violation � π � L ( km ) (2 n − 1) 515 km = ≈ (2 n − 1) × Mary Bishai 1 . 27 × ∆ m 2 31 ( eV 2 ) E n ( GeV ) 2 GeV Brookhaven National Lab (b) Impact of CP Phase on Vacuum Oscillations 0.2 ) e Introduction δ ν Vacuum oscillations, all terms, = 0 0.18 → cp CP in ν SM δ π All terms, = + /2 µ cp CPV and other 0.16 ν δ π P( All terms, = - /2 New Physics cp δ π 0.14 All terms, = cp Current 0.12 Experimental Landscape 0.1 LBNF/DUNE 0.08 0.06 Conclusion 0.04 0.02 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Neutrino Energy/Baseline (GeV/km) 7 / 41

  8. ν µ → ν e Oscillations in the 3-flavor ν SM LBNF/DUNE The ν µ → ν e probability maxima due to the atmospheric oscillation and the Hunt scale occur at for Leptonic CP Violation � π � L ( km ) (2 n − 1) 515 km = ≈ (2 n − 1) × Mary Bishai 1 . 27 × ∆ m 2 31 ( eV 2 ) E n ( GeV ) 2 GeV Brookhaven National Lab δ (c) Impact of Matter Effects on Oscillations ( = 0) 0.2 cp ) e Introduction ν δ Vacuum oscillations, all terms, = 0 0.18 → cp CP in ν SM µ Matter effect at 1000km, NH CPV and other 0.16 ν P( New Physics Matter effect at 2000km, NH 0.14 Current Matter effect at 3000km, NH 0.12 Experimental Matter effect at 3000km, IH Landscape 0.1 LBNF/DUNE 0.08 0.06 Conclusion 0.04 0.02 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 Neutrino Energy/Baseline (GeV/km) 8 / 41

  9. Impact of Sterile Neutrinos on Long-Baseline ν Oscillations LBNF/DUNE and the Hunt Neutrino Energy (GeV) Neutrino Energy (GeV) for Leptonic CP Violation 2 -1 2 -1 10 10 1 10 10 10 1 10 1.2 Mary Bishai ND FD Brookhaven National Lab 1 Introduction 0.8 CP in ν SM Probability CPV and other New Physics ∆ 2 2 m = 0.05 eV 0.6 41 Current ν → ν Std. Osc. P( ) µ µ Experimental ν → ν × P( )( 5) µ Landscape e 0.4 ν → ν P( ) µ µ LBNF/DUNE ν → ν P( ) µ τ ν → ν 1-P( ) Conclusion 0.2 µ s 0 3 -2 -1 2 4 10 10 1 10 10 10 10 L/E (km/GeV) 9 / 41

  10. Impact of Sterile Neutrinos on Long-Baseline ν Oscillations LBNF/DUNE and the Hunt Neutrino Energy (GeV) Neutrino Energy (GeV) for Leptonic CP Violation 2 -1 2 -1 10 10 1 10 10 10 1 10 1.2 Mary Bishai ND FD Brookhaven National Lab 1 Introduction 0.8 CP in ν SM Probability CPV and other New Physics ∆ 2 2 m = 0.50 eV 0.6 41 Current ν → ν Std. Osc. P( ) µ µ Experimental ν → ν × P( )( 5) µ Landscape e 0.4 ν → ν P( ) µ µ LBNF/DUNE ν → ν P( ) µ τ ν → ν 1-P( ) Conclusion 0.2 µ s 0 3 -2 -1 2 4 10 10 1 10 10 10 10 L/E (km/GeV) 10 / 41

  11. Impact of Sterile Neutrinos on Long-Baseline ν Oscillations LBNF/DUNE and the Hunt Neutrino Energy (GeV) Neutrino Energy (GeV) for Leptonic CP Violation 2 -1 2 -1 10 10 1 10 10 10 1 10 1.2 Mary Bishai ND FD Brookhaven National Lab 1 Introduction 0.8 CP in ν SM Probability CPV and other New Physics ∆ 2 2 m = 50.00 eV 0.6 41 Current ν → ν Std. Osc. P( ) µ µ Experimental ν → ν × P( )( 5) µ Landscape e 0.4 ν → ν P( ) µ µ LBNF/DUNE ν → ν P( ) µ τ ν → ν 1-P( ) Conclusion 0.2 µ s 0 3 -2 -1 2 4 10 10 1 10 10 10 10 L/E (km/GeV) 11 / 41

  12. CP Violation in ν SM LBNF/DUNE The charge-parity (CP) asymmetry is defined as and the Hunt for Leptonic CP Violation A cp = P ( ν µ → ν e ) − P (¯ ν µ → ¯ ν e ) Mary Bishai P ( ν µ → ν e ) + P (¯ ν µ → ¯ ν e ) Brookhaven National Lab � ∆ m 2 � A cp ∼ cos θ 23 sin 2 θ 12 sin δ 21 L + matter effects Introduction sin θ 23 sin θ 13 4 E ν CP in ν SM CPV and other W. Marciano, Z. Parsa, Nucl.Phys.Proc.Suppl. 221 (2011) New Physics Current The CP phase δ cp is unknown. CP is violated when δ cp � = 0 , π Experimental Landscape LBNF/DUNE The 4 most important things to know about ν CPV Conclusion A cp ∝ 1 / sin θ 13 ⇒ Large θ 13 makes CPV searches HARDER. A cp ∝ 1 / tan θ 23 ⇒ Large sin( θ 23 ) = smaller CPV (octant!) A cp ∝ 1 / E ν ⇒ CP asymmetries are larger at lower energies A cp ∝ L ⇒ CP asymmetries are larger at longer baselines 12 / 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend