semi leptonic and dileptonic top quark decays at atlas
play

Semi-leptonic and Dileptonic Top-Quark Decays at ATLAS Raphael - PowerPoint PPT Presentation

Semi-leptonic and Dileptonic Top-Quark Decays at ATLAS Raphael Mameghani IMPRS/GK Young Scientist Workshop at Ringberg 23rd July 2007 1/ 25 Outline 1 Top pair production at LHC & ATLAS 2 Ratio of semileptonic and fully leptonic decays


  1. Semi-leptonic and Dileptonic Top-Quark Decays at ATLAS Raphael Mameghani IMPRS/GK Young Scientist Workshop at Ringberg 23rd July 2007 1/ 25

  2. Outline 1 Top pair production at LHC & ATLAS 2 Ratio of semileptonic and fully leptonic decays Semileptonic channel 3 Dileptonic channel 4 Summary & outlook 5 2/ 25

  3. Large Hadron Collider pp accelerator with 27 km circumference superconducting magnets √ s = 14TeV design luminosity: 10 34 cm − 2 s − 1 (start: 10 33 cm − 2 s − 1 ) bunch crossings every 25 ns 3/ 25

  4. ATLAS width: 44m, height: 22m, weight: 7000t together with CMS the universal detectors of LHC toroid magnet containing the muon system solenoid magnet for the inner detector 4/ 25

  5. Top Pair Production at the LHC Mainly (87%) gg → t ¯ t : q → t ¯ But also (13%) q ¯ t : Expectation: σ ( pp → t ¯ t ) ≈ 830 pb (NLO) � L dt = 10 fb − 1 8 · 10 6 events per year at 5/ 25

  6. Top Pair Decays t → W + b ( ≈ 100%) W → e, µ , τ + ν (each 1/9) W → q ¯ q (2/3) combinatorics ⇒ 5%: 30%: signature 2 jets 4 2 thereof b-jets 2 2 char. leptons 1 2 missing E T 1 6/ 25

  7. Reasons for a Ratio Measurement A cross section ratio might compensate Experimental Uncertainties � L dt ) luminosity (as N = σ · (energy and momentum scale uncertainties which might affect counting efficiencies) Theoretical Uncertainties parton density functions unknown effects of higher order But: two channels 7/ 25

  8. Branching Ratio Fully Leptonic / Semileptonic Standard Model expectation R ℓℓ/ℓ = BR ( t ¯ t → 2 ℓ + 2 ν + 2 q ) t → ℓ + ν + 4 q ) = N ℓℓ / N ℓ = 1 / 6 BR ( t ¯ discrepancies might occur due to rare top decays, e.g. H + + b t → ⇒ deficit of electrons and muons H + → τν , ¯ cs Previous Examination (ATLAS Design Report) � L dt = 10 fb − 1: statistical precision for 1 year with ∆ R ℓℓ/ℓ / R ℓℓ/ℓ ≈ 0 . 5 % Smeared 4-vectors with the cuts p T ( ℓ ) > 20GeV, E / T > 20GeV, min. 2 b-jets with p T > 20GeV Here with full detector simulation and no b-jet identification 8/ 25

  9. Semileptonic Channel Semileptonic Channel 9/ 25

  10. Signal & Background Semileptonic Signal ( ≈ 250pb) t ¯ t → ℓ ν + 4 jets , with ℓ = e , µ (MC@NLO) Other No All Hadronic t ¯ t Background ( ≈ 210pb) t ¯ t → ℓ ν ℓ ν + 2 jets , τ + X + 2 jets (MC@NLO) hadronic τ decays look quite similar to jets in the detector, in the following assumed that τ identification is not working W + jets Background ( ≈ 790pb) q ¯ q → W → ℓ ν + QCD jets ALPGEN & HERWIG irreducible contribution (apart from kinematics) 10/ 25

  11. QCD Background I Only ATLFAST simulation available (Generators: Alpgen + Pythia) # Alpgen partons cross sections [pb] 3 4 766 000 Cross sections: 4 549 000 5 64 000 6+ 30 000 Fake Leptons/Electrons A jet may be reconstructed as an electron / T from limited energy resolution Together with E ⇒ Background for semileptonic channel Would need 100 million fully simulated events! Fake jets manually: P(jet → e) = 10 − 3 = const. assumed 11/ 25

  12. QCD Background II partons events fake electron events factor 3 225 834 402 076 1.78 4 200 000 508 064 2.54 5 430 106 1 466 860 3.41 6+ 446 900 2 249 220 5.03 σ eff = σ · P ( j → e ) · factor No energy dependence of partons σ eff [pb] P(j → e) considered here 3 8483 4 1394 Correlations as each jet in 5 218 event is used once as an 6+ 151 electron 12/ 25

  13. Cut Flow n events 1: 1 ℓ P T > 20 GeV, | η | < 2 . 5 t t → l ν 4j 10 10 7 7 2: 3 jets > 40 GeV + 1 jet > 20 GeV t t → l ν l ν 2j, τ X W → l ν , τ ν + 4j (all | η | < 2 . 5) 6 6 10 10 QCD fake l 3: E / T > 20 GeV 5 5 10 10 in 3 jets with max. ∑ � 4: P T : | m 2 jets − m W | < 10 GeV 4 4 10 10 5: m total < 900 GeV 3 3 lead. 3 jets | cos θ ∗ | ’s < 0 . 7 10 10 6: 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 t ¯ red: t semileptonic 9: without cuts 5 & 6 brown: other no all hadronic t ¯ t Cuts on missing transversal energy blue: W + jets and number of jets are the most yellow: QCD with fake important ones electrons 13/ 25

  14. Hadronic Top Hadronic top mass: Mass of Hadronic Top after Preselection Events Events 7000 7000 t t l 4j → ν 3 jets with highest vec- t t → l ν l ν 2j, τ X 6000 6000 tor sum P T W → l ν , τ ν + 4j ( t ¯ t tend to recoil) 5000 5000 QCD fake l But do not take the 4000 4000 event if no pair within 3000 3000 the 3 jets has an invari- 2000 2000 ant mass less than 10 GeV away from the W 1000 1000 mass! 0 0 0 0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 M M / GeV / GeV top top 14/ 25

  15. Leptonic Top With mass constraint two solutions for neutrino p z W = ( E ℓ + E ν , T ) 2 − ( p ℓ, x + p ν , x ) 2 − ( p ℓ, y + p ν , y ) 2 − ( p ℓ, z + p ν , z ) 2 M 2 Take smaller solution Mass of Leptonic Top after Preselection Top Mass Difference after Preselection 14000 14000 Events Events Events Events 6000 6000 t t → l ν 4j t t → l ν 4j t t l l 2j, X 12000 12000 → ν ν τ t t → l ν l ν 2j, τ X 5000 5000 W → l ν , τ ν + 4j W → l ν , τ ν + 4j 10000 10000 QCD fake l QCD fake l 4000 4000 8000 8000 3000 3000 6000 6000 2000 2000 4000 4000 1000 1000 2000 2000 0 0 0 0 0 0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 -200 -150 -100 -200 -150 -100 -50 -50 0 0 50 50 100 100 150 150 200 200 M M / GeV / GeV (M (M - M - M ) / GeV ) / GeV top,lept top,lept top top top,had top,had Invariant mass from neutrino vector + Difference between hadronic and lep- lepton + remaining jet with highest P T tonic top mass 15/ 25

  16. Missing Transverse Energy before & after all Cuts Missing E / GeV Missing E (after cuts) / GeV T T Events Events Events Events 600 600 t t l 4j t t l 4j → ν → ν t t l l 2j, X t t l l 2j, X → ν ν τ → ν ν τ 6 6 10 10 500 500 W → l ν , τ ν + 4j W → l ν , τ ν + 4j QCD fake l QCD fake l 400 400 5 5 10 10 300 300 200 200 10 10 4 4 100 100 0 0 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 missing E missing E missing E missing E T T T T 16/ 25

  17. Top Masses after all Cuts Mass of Hadronic Top Mass of Leptonic Top Events Events Events Events t t l 4j t t l 4j → ν → ν 2500 2500 t t l l 2j, X t t l l 2j, X → ν ν τ → ν ν τ 2000 2000 W → l ν , τ ν + 4j W → l ν , τ ν + 4j 2000 2000 QCD fake l QCD fake l 1500 1500 1500 1500 1000 1000 1000 1000 500 500 500 500 0 0 0 0 0 0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 0 0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 M M / GeV / GeV M M / GeV / GeV top top top top 17/ 25

  18. Without Cut on Missing Transverse Energy Missing E (after cuts) / GeV Mass of Hadronic Top T 1000 1000 Events Events Events Events 3500 3500 t t → l ν 4j t t → l ν 4j t t → l ν l ν 2j, τ X t t → l ν l ν 2j, τ X 3000 3000 800 800 W → l ν , τ ν + 4j W → l ν , τ ν + 4j 2500 2500 QCD fake l QCD fake l 600 600 2000 2000 1500 1500 400 400 1000 1000 200 200 500 500 0 0 0 0 0 0 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 0 0 20 20 40 40 60 60 80 80 100 100 120 120 140 140 missing E missing E M M / GeV / GeV top top T T Hadronic top mass & missing E T without E / T cut QCD background increases by ≈ 1 order of magnitude 18/ 25

  19. Dileptonic Channel Dileptonic Channel 19/ 25

  20. MC Samples Leptonic t ¯ t Signal ( ≈ 40pb) t ¯ t → ℓ ν ℓ ν + 2 jets , with ℓ = e , µ Again no b quark identification info used in my analysis Other No All Hadronic t ¯ t Background ( ≈ 420pb) t ¯ t → ℓ ν + 4 jets , τ + X + 2 jets (5200 sample) Assume that τ identification is not available Z Background ( ≈ 5000pb) Z → ℓℓ + jets from hard interaction Diboson Background ( ≈ 35pb) ZZ , WZ , WW → leptons + jets from hard interaction 20/ 25

  21. W + jets Background I W decay cross sections [pb] 17 740 e ν Cross sections: 17 740 µν τν 17 170 Fake Electrons A jet may be reconstructed as an electron E / T from neutrino ⇒ Background for di-leptonic channel Manually: P(jet → e) = 10 − 3 = const. assumed Random charge ± e assigned to fake electrons 21/ 25

  22. W + jets Background II W decay events fake electron events factor e ν 347 500 342 285 0.985 215 200 153 149 0.712 µν τν 98 007 85 976 0.877 σ eff = σ · P ( j → e ) · factor No energy dependence of W decay σ eff [pb] P(j → e) considered here e ν 17.2 Correlations as each jet in 12.4 µν event is used once as an 15.1 τν electron 22/ 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend