the top quark we observe
play

The Top Quark We Observe Gustaaf Brooijmans Indirect Searches for - PowerPoint PPT Presentation

The Top Quark We Observe Gustaaf Brooijmans Indirect Searches for New Physics at the Time of the LHC The Galileo Galilei Institute, March 23 rd , 2010 1 Gustaaf Brooijmans The Top Quark We Observe Top Quark Properties from Decays Mass


  1. The Top Quark We Observe Gustaaf Brooijmans Indirect Searches for New Physics at the Time of the LHC The Galileo Galilei Institute, March 23 rd , 2010 1 Gustaaf Brooijmans The Top Quark We Observe

  2. • Top Quark Properties from Decays • Mass • Branching Ratios & V tb • V tb from Single Top • W Helicity • Top Quark Charge and Width • Top Quark Production • Cross-Section • Spin Correlations • Forward-backward asymmetry Gustaaf Brooijmans The Top Quark We Observe 2

  3. Top History Date Milestone Statistics Luminosity √ s 1995 Observation 10’s 50 pb -1 1.8 TeV 1997 Properties ~100 120 pb -1 1.8 TeV Precision 2009 100’s - 1k few fb -1 1.96 TeV Properties Single Top 2009 10’s (?) 2 fb -1 1.96 TeV Observation 2011 Observation 5 k? ~1 fb -1 7 TeV Precision 2014 100 k? 10 (?) fb -1 14 (?) TeV Differential Gustaaf Brooijmans The Top Quark We Observe 3

  4. Tevatron Gustaaf Brooijmans The Top Quark We Observe 4

  5. Decays Gustaaf Brooijmans The Top Quark We Observe 5

  6. Top Mass • Top quark’s existence 14 Mass of the Top Quark (*Preliminary) CDF-I di-l 167.4 10.3 4.9 ! ! established 18 years after D0-I di-l 168.4 12.3 3.6 ! ! bottom quark * CDF-II di-l 171.2 2.7 2.9 ! ! * • Long road to discovery due to D0-II di-l 174.7 2.9 2.4 ! ! CDF-I l+j 176.1 5.1 5.3 ! ! surprisingly large mass D0-I l+j 180.1 3.9 3.6 ! ! • Now known to better than 1% * CDF-II l+j 172.1 0.9 1.3 ! ! * D0-II l+j 173.7 0.8 1.6 ! ! • Interestingly, y top (m top ) ≅ 1 CDF-I all-j 186.0 10.0 5.7 ! ! • Precise measurement with * CDF-II all-j 174.8 1.7 1.9 ! ! * CDF-II trk 175.3 6.2 3.0 ! ! low Tevatron statistics driven * Tevatron March’09 173.1 0.6 1.1 ! ! hep-ex/0903.2503 (stat.) (syst.) ! by experimenters’ CDF March’07 2 /dof = 6.3/10.0 (79%) ! 12.4 1.5 2.2 ! ! 0 resourcefulness 150 160 170 180 190 200 2 m (GeV/c ) top Gustaaf Brooijmans The Top Quark We Observe 6

  7. Matrix Element Analyses • Currently yield the most precise measurement of the top quark mass, also • Major contribution to the observation of single top • Big contribution in Higgs searches • Basically unbinned maximum likelihood fits • Event-by-event measured uncertainties • More weight for more signal-like event Transfer functions: • Determine event’s “signal probability”: generated → measured momenta b-tag prob matrix element Gustaaf Brooijmans The Top Quark We Observe 7

  8. • Caveats: • LO matrix elements (typically madevent): • (Initially) require exact number of jets • Evaluation of NLO systematic not so easy • Recent development: add NN to discriminate further against background • Calibration, i.e. determination of transfer functions done by full simulation with pythia • What’s really measured is basically PMAS(6,1) • Group trying to figure out what that really means • Because with current precision, that is an important question! Gustaaf Brooijmans The Top Quark We Observe 8

  9. Top Mass @ LHC • Use statistics to beat down the systematics • Will be very challenging to do better than Tevatron • ... but ultimately expect to get there • Intrinsic limit from measurement in final state • Can’t beat Λ QCD ! • Can we hope for ~500 MeV precision? • Only way to do better is probably threshold scan at lepton collider Gustaaf Brooijmans The Top Quark We Observe 9

  10. Mass: CPT Test • Mass difference top - antitop: 3.8 ± 3.7 GeV DØ: Phys.Rev.Lett.103:132001,2009 Gustaaf Brooijmans The Top Quark We Observe 10

  11. Is It Top? • Top ≡ weak isospin partner of bottom • “Partner” in the sense of having the largest EWK/CKM coupling to b • Measure • ...from fraction of b-tagged jets in pair production If unitary CKM matrix with 3 generations: |V tb | > 0.89 @ 95% CL DØ: Phys. Rev. Lett. 100 , 192003 (2008 ) Gustaaf Brooijmans The Top Quark We Observe 11

  12. • Rare decays • t → Zc: < 3.7% @ 95% CL (CDF: PRL 101 192002 ) ATLAS CSC Book: arXiv:0901.512 • t → H + b: < 10-30% @ 95% CL (CDF: PRL 103 101803 , DØ: Phys.Lett.B682:278-286,2009, Phys.Rev.D80:051107(R),2009 ) • LHC prospects (ATLAS): • t → H + b: < ~3%, then systematics limited? • t → Zq, γ q: sensitive to ~10 -4 with 100 fb -1 • t → gq: sensitive to ~7 10 -3 • Radiative t → WbZ (predicted at ~5 10 -7 in SM) out of LHC reach Gustaaf Brooijmans The Top Quark We Observe 12

  13. Single Top • Probe the top’s EWK coupling through production • Process now well-established at the Tevatron: Single Top Quark Cross Section August 2009 +0.56 CDF Lepton+jets 3.2 fb 2.17 pb 1 0.55 CDF: PRL 103 092002 +2.6 CDF MET+jets 2.1 fb 5.0 pb 1 2.3 +0.88 D Lepton+jets 2.3 fb 3.94 pb 1 DØ: Phys. Rev. Lett. 103 , 092001 (2009 ) 0.88 +0.58 Tevatron Combination 2.76 pb 0.47 Preliminary B.W. Harris et al., PRD 66, 054024 (2002) m top = 170 GeV N. Kidonakis, PRD 74, 114012 (2006) 8 0 2 4 6 Gustaaf Brooijmans The Top Quark We Observe 13

  14. • Extracted measurements: • |V tb | > 0.71/0.78 @ 95% CL (CDF/DØ) Gustaaf Brooijmans The Top Quark We Observe 14

  15. Single Top @ LHC • t-channel and Wt measurable with a few fb -1 , more needed for s-channel ATLAS CSC Book: arXiv:0901.512 Gustaaf Brooijmans The Top Quark We Observe 15

  16. W Boson Helicity • But is the tWb coupling EWK? • Study angular distribution of the decays Longitudinal LH Contribution RH Contribution Contribution ≈ 0.3 in SM ≈ 0.0 in SM ≈ 0.7 in SM Gustaaf Brooijmans The Top Quark We Observe 16

  17. • Two approaches: • Reconstruct cos θ * directly in l+jets and/or dilepton events, then use template or unfolding Best Fit SM Dileptons Leptonic W in Hadronic W in l+jets l+jets 2-D likelihood fit to templates Phys. Rev. Lett. 100 , 062004 (2008 ) Gustaaf Brooijmans The Top Quark We Observe 17

  18. 1.9 fb -1 CDF Templates CDF Unfolding Conference Note 9114 Conf. Note 9215 Gustaaf Brooijmans The Top Quark We Observe 18

  19. • Or, use matrix-element technique 8 Graph -1 CDF Run II Preliminary (2.7 fb ) CDF Preliminary ( ∫ L dt = 1.9 fb -1 ) Assumes mt = 175 GeV/c2 + f 1 Matrix Element: (fix f + = 0.0) f =0.64 ± 0.08 ± 0.07 68.27% CL 0 Cos θ * Unfolding: 90% CL f =0.15 ± 0.10 ± 0.04 f =0.38 ± 0.21 ± 0.07 + 0 0.5 (fix f 0 = 0.7) f =0.01 ± 0.05 ± 0.03 + (fix f + = 0.0) f =0.66 ± 0.10 ± 0.06 0 Cos θ * Template: 0 f =-0.03 ± 0.07 ± 0.03 f =0.65 ± 0.19 ± 0.03 0 0.5 1 + 0 f 0 (fix f 0 = 0.7) f =-0.04 ± 0.04 ± 0.03 + (fix f + = 0.0) f =0.59 ± 0.11 ± 0.04 0 0 0 0.2 0.4 0.6 0.8 1 Conf. Note 10004 W-Helicity Fraction from Top Decay ➡ All measurements statistics-limited.... Gustaaf Brooijmans The Top Quark We Observe 19

  20. Top Charge • Does it have charge +2/3? Look at the charge of the b associated with the W • Jet charge (CDF & DØ) • CDF Conf. Note 8967 : exclude 4/3 @ 87% CL • DØ: exclude complete sample is made of charge 4/3 quarks @ 92% CL Phys. Rev. Lett. 98 , 041801 (2007) • Soft lepton tag (CDF) • 45 events, 29 events best fit 2/3, 16 events 4/3 → 4/3 excluded @ 95% CL Conf. Note 9939 Gustaaf Brooijmans The Top Quark We Observe 20

  21. Top Width • SM: Γ t ~1.4 GeV • Combine Γ (t → Wb) (from single top) and B(t → Wb) and assume B(t → Wq) = 1: • Γ t = 2.1 ± 0.6 GeV DØ: Conference Note D0 Note 6034-CONF • i.e. τ t = (3 ± 1) 10 -25 s • Using only Γ (t → Wb): • Γ t > 1.2 GeV @ 95% CL • τ t < 5 10 -25 s @ 95% CL • CDF direct measurement from m t , m jj : • Γ t < 7.5 GeV @ 95% CL ( Conf. Note 10035 ) Gustaaf Brooijmans The Top Quark We Observe 21

  22. Production Gustaaf Brooijmans The Top Quark We Observe 22

  23. Top Pair Production Dilepton CDF Conf. Note 9913 Conference Note D0 Note 6038-CONF l+jets Phys.Rev.D80:071102,2009 ➡ Not much room for anomalous production... Gustaaf Brooijmans The Top Quark We Observe 23

  24. Spin Correlations • Top decays before hadronization → initial polarization information is reflected in top decay products _ • Tops have opposite/same helicity in qq/gg production • Measure angles of down-type fermions from W/top decay in _ top rest-frame wrt quantization axis (top in tt rest frame or beam axis) Gustaaf Brooijmans The Top Quark We Observe 24

  25. • It’s a difficult measurement: Helicity Angle Bilinear Cos( )*Cos( ) , Fit Result ! ! l d 240 240 -1 CDF Run II preliminary L=4.3 fb 220 220 Opposite Helicity (OH) 200 200 Same Helicity (SH) 180 180 Backgrounds 160 160 Data 140 140 Events Events f : 0.80 +/- 0.25 +/- 0.08 OH 120 120 100 100 80 80 60 60 40 40 20 20 0 0 -1 -1 -0.8 -0.8 -0.6 -0.6 -0.4 -0.4 -0.2 -0.2 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1 1 cos( cos( )*cos( )*cos( ) ) ! ! ! ! l l d d Conf. Note 10048 Conference Note 5950-CONF CDF: C = 0.60 ± 0.50 (stat) ± 0.16 (syst) (l+jets) CDF: C = 0.32 +0.55-0.78 (stat + syst) (dilepton) DØ: C = -0.17 +0.65-0.53 (stat + syst) (dilepton) SM: 0.78 (NLO) Gustaaf Brooijmans The Top Quark We Observe 25

  26. Polarization in Single Top Conf. Note 9920 • Something for the LHC! Gustaaf Brooijmans The Top Quark We Observe 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend