determination of the top quark charge
play

Determination of The Top Quark Charge M. Ciljak, M. Jurcovicova, S. - PowerPoint PPT Presentation

Determination of The Top Quark Charge M. Ciljak, M. Jurcovicova, S. Tokar Comenius Univ., Bratislava, Slovakia Motivation: CDF and D0 analyses + precision EW data do not exclude: Top quark seen in Fermilab is an exotic quark with Q t = 4


  1. Determination of The Top Quark Charge M. Ciljak, M. Jurcovicova, S. Tokar Comenius Univ., Bratislava, Slovakia Motivation: • CDF and D0 analyses + precision EW data do not exclude: Top quark seen in Fermilab is an exotic quark with Q t = − 4 / 3. ( D. Chang et al , Phys. Rev. D59, 091503) How to determine the top charge? • by measuring the charges of top decay products • via radiative t ¯ t events (sensitive to Q top ) Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 1

  2. Top charge via its decay products Event samples suitable for the analysis : t → ( lν )( lν ) b ¯ • Dilepton decays t ¯ (400 kEv./10 fb − 1 ) b t → ( lν )( jj ) b ¯ • Semileptonic decays t ¯ (2500 kEv./10 fb − 1 ) b All jet modes not suitable due to huge QCD bkgd ! Determination of the b -jet charge : i q i | � p i | κ � j · � q bjet = i | � � j · � p i | κ • q i ( � p i ) is the charge(momentum) of b -jet track • � j i is the b -jet direction and κ is an exponent Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 2

  3. Selection criteria Di-lepton Semileptonic 2 isolated high p T leptons ( e , µ ) 1 isolated high p T lepton ( e , µ ) p (1) > 35 GeV , p (1) p (1) > 25 GeV > 20 GeV T T T | η | < 2 . 5 | η | < 2 . 5 Big E miss Big E miss > 40 GeV > 20 GeV T T At least two jets, p T > 25 GeV At least two b -jets, p T > 40 GeV 1 or 2 b -tagged, | η | < 2 . 5 In total 4 jets p T > 40 GeV , | η | < 2 . 5 S/B ≈ 10 (Y-Book) S/B ≈ 65 (P. Grenier) Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 3

  4. Association of lepton and b -jet di-lepton case: m ( l + , b (1) jet ) < m cr ∧ m ( l + , b (2) jet ) > m cr m ( l − , b (1) jet ) < m cr ∧ m ( l − , b (2) jet ) > m cr semileptonic case: m ( l, b (1) jet ) < m cr ∧ m ( l, b (2) jet ) > m cr 120 GeV < m ( jjb jet ) < 220 GeV l − b -jet invariant mass, solid : l and b − jet from the same top, dashed : from different tops, m cr ≈ 160 GeV . Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 4

  5. Reconstructed b (¯ b ) -jet charge distributions Charge distributions of b -jets connected with l + ( b jet ) and l − (¯ b jet ): ¯ b -jet charge distribution b -jet charge distribution Mean b -jet charges : q (¯ q ( b jet ) = − 0 . 109 ± 0 . 007 and b jet ) = 0 . 112 ± 0 . 007 ( Independent fragment. in PYTHIA - 500 k events, cone R = 0 . 4: q ( ¯ q ( b jet ) = − 0 . 113 ± 0 . 007 and b jet ) = 0 . 117 ± 0 . 008 ) Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 5

  6. Top charge via photon radiation in t ¯ t events Signal processes (sensitive to Q top ) : • Radiative t ¯ t production pp → t ¯ tγ (matrix el., PYTHIA) • Radiative top decay t ¯ t , t → Wbγ (matrix el., PYTHIA). Background processes (non sensitive to Q top ): • Radiative W decay t ¯ t , W → jjγ ( lνγ ) (matrix el., PYTHIA) • Other t ¯ t processes leading to high p T photon ( PYTHIA ) • Non − t ¯ t radiative bkgd ( W + jets + γ ) (matrix el., PYTHIA) Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 6

  7. Radiative top production t γ b t W – t Figure 1: Radiative top production (an example) - production (matrix el.) and decay(PYTHIA), in initial state: q ¯ q and gg . Cross section: σ ∼ Q 2 top Important: virtuality of radiating top is needed ! Decay of final t -quark: t → Wb → blν ( jj ) Top and W decays treated in narrow width approximation. Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 7

  8. u → t ¯ Radiative top production: gg, u ¯ tγ diagrams Diagrams by MadGraph 4 4 4 1 1 1 t t t t A t Diagrams by MadGraph t A 5 5 5 t t A 5 4 4 t 1 1 1 u t t t u A t 3 3 3 u 2 2 2 t graph 1 graph 2 graph 3 t u 4 3 t 5 u 5 3 3 1 1 1 A t t t A u t t A t u t t u t A 3 5 3 3 5 5 2 2 2 t graph 1 graph 2 graph 3 t A t t t t 4 4 4 2 2 2 graph 4 graph 5 graph 6 4 1 t 4 4 1 1 u A t t 5 t A t 5 5 t A t u t t 3 2 3 3 2 2 graph 4 graph 7 graph 8 Figure 2: pp → t ¯ tγ , 2 gluons or u ¯ u quark pair in initial state. Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 8

  9. Radiative top decay γ W b b W W t t b t + + γ γ W Figure 3: Radiative top decay: pp → t ¯ t (production), t → Wbγ . . . • Decaying top quark is on mass shell . • Photons from the W and b lines do not feel the top charge ! • Destructive interference of the diagrams is expected: σ ( − 4 / 3) < σ (2 / 3). Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 9

  10. Reconstruction by ATLFAST: sets of conditions t → l ν jjb¯ Selected sample: t¯ b (semileptonic events) • General top cuts (C1) njets ≥ 4 p T > 20 GeV | η | < 2 . 5 nbjets = 2 p T > 15 GeV | η | < 2 . 0 nlep = 1 p T > 20 GeV | η | < 2 . 5 nphot = 1 p T > 30 GeV | η | < 2 . 5 p T > 20 GeV miss / • Top reconstructed via the W → jj decay ( C2 ) | m ( jj ) − m W | < 20 GeV m ( jj ) = min { m ( j i , j j ) − m W } | m T ( l ν ) − m W | < 20 GeV Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 10

  11. Kinematic cuts Radiation in top production - top virtuality is required t ¯ tγ cuts : m ( b 1 , 2 jjγ ) > 190 GeV and m T ( b 2 , 1 lγ ; / p T ) > 190 GeV � 2 � 2 �� � m 2 p T ( blγ ) + � p 2 T ( blγ ) + m 2 ( blγ ) + / T ( blγ ; / p t ) = − p T � p T / Radiation in top decay (on-mass-shell top ) Wb γ cuts: m T ( bl γ ; / p T ) < 190 and m ( bjj γ ) > 190 or m T ( bl γ ; / p T ) > 190 and 160 < m ( bjj γ ) < 190 Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 11

  12. Selection efficiencies - t ¯ tγ cuts t¯ t γ cuts (radiative top production selection) applied Selection efficiencies for different processes pp → t¯ t ¯ Process t γ t → Wbγ W → lνγ t Wγjets → jjγ 2 · 10 5 6 . 9 · 10 6 2 . 1 · 10 6 3 . 5 · 10 5 2 · 10 5 # events 1 . 50 · 10 − 3 1 . 2 · 10 − 3 C1 (%) 0 . 723 0 . 423 0 . 148 0 . 76 · 10 − 3 6 . 2 · 10 − 4 C2 (%) 0 . 423 0 . 292 0 . 079 0 . 38 · 10 − 3 4 . 3 · 10 − 4 C3 (%) 0 . 338 0 . 021 0 . 013 Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 12

  13. Selection efficiencies t ¯ tγ cuts) Radiative top production vs. Radiative to decay Figure 4: Criterion (C3) applied Figure 5: Criterion (C3) applied to the ttγ spectrum to the t → Wbγ spectrum Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 13

  14. Signal( ttγ ) vs. Bckg( t → Wbγ ) Figure 6: S vs. p T γ ( Q t = 2 Figure 7: S vs. p T γ ( Q t = − 4 3 ) 3 ) Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 14

  15. Cross section Q t = 2 / 3 vs. Q t = − 4 / 3 Figure 8: Comparison of S vs p T γ for Q t = 2 / 3 and − 4 / 3 Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 15

  16. Radiative top production vs Bkgd t¯ Sample: 10 fb − 1 t γ -cuts applied, Signal vs Bkgd , integrated x-sections ( σ ) and # events Q = 2 / 3 Q = − 4 / 3 process σ seen [ fb ] events σ seen [ fb ] events (1 year) (1 year) pp → t¯ t γ 7.81 78.1 24.81 248.1 pp → t¯ t ; t → Wb γ 0.62 6.2 0.244 2.4 Q top indep. bkgd 6.65 66.5 6.65 66.5 Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 16

  17. Background for t ¯ tγ -cuts Q top independent Bkgd for Radiative top production, x-sections ( σ ) and cut and reconstr. efficiencies ( ǫ ): σ [ pb ] ( | y | < 3 . 5 ǫ [ % ] events Bkgd process p T > 10 GeV ) Atlfast (1 year) pp → t ¯ t ; W → p 1 p 2 γ 8.25 0.013 10.7 ± 3.4 pp → t ¯ 3 . 8 ∗ 10 − 4 t ; ( π o , η, .. ) 550 20.7 ± 4.5 4 . 3 ∗ 10 − 4 pp → Wγ jets 812 35.0 ± 6.0 full background 66.4 Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 17

  18. Radiative top decay vs Bkgd Sample: 10 fb − 1 Wb γ -cuts applied, Signal vs Bkgd , integrated x-sections ( σ ) and # events: Q = 2 / 3 Q = − 4 / 3 process σ seen [ fb ] events σ seen [ fb ] events (1 year) (1 year) pp → t¯ t ; t → Wb γ 1.036 10.4 0.406 4.1 pp → t¯ t γ 0.324 3.2 1.028 10.1 Q top indep. bkgd 1.240 12.4 1.240 12.4 Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 18

  19. Summary Top charge determination studied for ATLAS ( LHC , 10 fb − 1 ) via • charges of top decay products with samples of di-lepton ( pp → ( lν )( lν ) b ¯ b ) and one-lepton ( pp → ( lν )( jj ) b ¯ b ) t ¯ t -events • radiative t ¯ t events. The ATLAS experiment will be able ( preliminary) • to find correlations between b -quarks and W -bosons in t (¯ t )decays using top decay products charges, • to distinguish between the top charge 2 / 3 and − 4 / 3 by measuring the radiative t ¯ t process cross section. Study of helicity of top decay products. b -jet charge via leptonic b -decay Comenius Univ. May 22, 2003 S.Tokar, ATLAS Workshop, Athens, May 2003 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend