lecture iii leptonic mixing neutrinos in cosmology summer
play

Lecture III: Leptonic Mixing Neutrinos in cosmology Summer School - PowerPoint PPT Presentation

Lecture III: Leptonic Mixing Neutrinos in cosmology Summer School on Particle Physics ICTP , Trieste 6-7 June 2017 Silvia Pascoli IPPP - Durham U. mass 1 @Silvia Pascoli What will you learn from this lecture? The problem of leptonic


  1. Lecture III: Leptonic Mixing Neutrinos in cosmology Summer School on Particle Physics ICTP , Trieste 6-7 June 2017 Silvia Pascoli IPPP - Durham U. mass 1 @Silvia Pascoli

  2. What will you learn from this lecture? ● The problem of leptonic mixing - Current status - Prospects to discover leptonic CPV and measure with precision the oscillation parameters - How to explain the observed mixing structure and Flavour symmetry models ● Neutrinos in cosmology - neutrinos in the Early Universe - sterile neutrinos as WDM - Leptogenesis and the baryon asymmetry 2

  3. Plan of lecture III ● The problem of leptonic mixing - Current status - Prospects to discover leptonic CPV and measure with precision the oscillation parameters - How to explain the observed mixing structure and Flavour symmetry models ● Neutrinos in cosmology - neutrinos in the Early Universe - sterile neutrinos as WDM - Leptogenesis and the baryon asymmetry 3

  4. Recap of neutrino mixing 360 2.8 8.5 31 2.6 2 2 ] ∆ m ★ 270 8 2 ] 2.4 ★ -5 eV -3 eV 2.2 21 [10 7.5 ★ -2.2 32 [10 180 2 ∆ m -2.4 δ CP 7 2 ∆ m -2.6 90 6.5 0.2 0.25 0.3 0.35 0.4 -2.8 2 θ 12 0.3 0.4 0.5 0.6 0.7 sin 2 θ 23 sin 0 Important aspects: 0.01 0.02 0.03 0.04 2 θ 13 sin - maximal or close to maximal θ 23 NuFit 3.0: M. C. Gonzalez- Garcia et al., 1611.01514 - significantly different from maximal θ 12 See also F. Capozzi et al., - quite large. This poses some θ 13 1703.04471 challenges for understanding the origin of the flavour structure - Mixings very different from quark sector 4 @Silvia Pascoli

  5. Hints of CP-violation Neutrino 2014 Daya Bay results Neutrino 2014 RENO results 2 2.0 NO NO 2.0 300 Normal Hierarchy 2016 results 1.8 1.5 1.5 1 σ 1.6 250 ★ 2 σ 1.4 δ / π 3 σ 200 1.0 1 1.2 1.0 150 0.8 0.5 0.5 100 360 0.6 NO 0.4 50 0.0 0.2 0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0 0.02 0.04 0.06 270 0.0 0 2 sin 0.01 0.02 0.03 0.04 0.05 0.06 θ ★ 2 θ 13 13 sin 2.0 2.0 D. V. Forero et al., 1405.7540 2 1.8 180 IO Inverted Hierarchy 300 There is a slight 1.6 1.5 δ CP 1.4 250 preference for CP- 1.2 90 1.0 200 1.0 violation, which is 0.8 150 0.6 mainly due to the 0.5 0 0.4 0.01 0.02 0.03 0.04 100 2 θ 13 combination of T2K 0.2 sin 50 0.0 0.0 NuFit 3.0: M. C. Gonzalez- 0.01 0.02 0.03 0.04 0.05 0.06 0.00 0.01 0.02 0.03 0.04 0.05 0.06 a n d r e a c t o r Garcia et al., 1611.01514 2 0 sin θ 13 neutrino data. F. Capozzi et al., 1312.2878 5

  6. 1. Different flavour models can lead to specific predictions for the value of the delta phase: sin θ 23 − 1 ● Sum rules: 2 = a 0 + λ sin θ 13 cos δ + higher orders √ ● discrete symmetries models ● charged lepton corrections to : U PMNS = U † U ν e U ν e.g. M.-C. Chen and Mahanthappa; Girardi et al.; Petcov; Alonso, Gavela, Isidori, Maiani; Ding et al.; Ma; Hernandez, Smirnov; Feruglio et al.; Mohapatra, Nishi; Holthausen, Lindner, Schmidt; and others 2. In order to generate dynamically a baryon asymmetry, the Sakharov’s conditions need to be satisfied: Neutrinoless double beta decay - B (or L) violation; LBL - C, CP violation; Expansion of the Universe - departure from thermal equilibrium. Leptogenesis in models of neutrino masses 6

  7. CP-violation in LBL experiments CP-violation will manifest itself in neutrino oscillations, due to the delta phase. The CP-asymmetry: � � P ( ν µ → ν e ; t ) − P (¯ ν µ → ¯ ν e ; t ) = − → · · · ⇥ ∆ m 2 ⇥ ∆ m 2 ⇥ ∆ m 2 ⌅ ⇤ ⇤ ⇤⇧ 21 L 23 L 31 L = 4 s 12 c 12 s 13 c 2 13 s 23 c 23 sin δ sin + sin + sin 2 E 2 E 2 E ● CP-violation requires all angles to be nonzero. ● It is proportional to the sin of the delta phase. ● If one can neglects , the asymmetry goes to zero: ∆ m 2 21 effective 2-neutrino probabilities are CP-symmetric. 7

  8. CPV needs to be searched for in long baseline neutrino experiments which have access to 3-neutrino oscillations. A. Cervera et al., hep-ph/0002108; (1 � r A ) 2 sin 2 (1 � r A ) ∆ 31 L 1 K. Asano, H. Minakata, 1103.4387; P µe ' 4 c 2 23 s 2 13 S. K. Agarwalla et al., 1302.6773... 4 E sin (1 � r A ) ∆ 31 L ✓ ◆ ∆ 21 L δ � ∆ 31 L + sin 2 θ 12 sin 2 θ 23 s 13 cos 2 E 4 E 4 E ∆ 2 21 L 2 13 sin 2 (1 � r A ) ∆ 31 L 23 sin 2 2 θ 12 + s 2 16 E 2 � 4 c 2 23 s 4 4 E ● The CP asymmetry peaks for 6 � 10 � 2 sin^2 2 theta13 ~0.001. Large 10 3 4 � 10 � 2 Atmospheric Solar theta13 makes its searches 10 3 2 � 10 � 2 Solar Atmospheric 0 P 0 possible but not ideal. 10 3 � 2 � 10 � 2 1˚ Interference Θ 13 � 10˚ CP Interference ● Crucial to know mass ordering. 10 3 � 4 � 10 � 2 ● CPV effects more pronounced at 10 3 � 6 � 10 � 2 0 500 1000 1500 0 500 1000 1500 2000 low energy. L � E � km � GeV � P . Coloma, E. Fernandez-Martinez, JHEP1204 8 ●

  9. CPV Searches Category Experiment Status Oscillation parameters Accelerator MINOS+ [74] Data-taking MH/CP/octant Accelerator T2K [21] Data-taking MH/CP/octant Near future: T2K Accelerator NOvA [108] Commissioning MH/CP/octant and NOvA. Some Accelerator RADAR [76] Design/ R&D MH/CP/octant Accelerator CHIPS [75] Design/ R&D MH/CP/octant sensitivity to CPV Accelerator LBNE [87] Design/ R&D MH/CP/octant Accelerator Hyper-K [97] Design/ R&D MH/CP/octant Accelerator LBNO [109] Design/ R&D MH/CP/octant Accelerator ESS ν SB [110] Design/ R&D MH/CP/octant Accelerator DAE δ ALUS [111] Design/ R&D CP T2K WG Report: Neutrinos, de Gouvea (Convener) et al., 1310.4340 60 CP Violation at 95% C.L. Coverage “NOvAplus” 50 CP � Percent NOvA 40 12 12 30 T2K(3+2) T2K(3+2)+NO ν A(3+3) T2K(5+0) T2K(5+0)+NO ν A(3+3) True NH, θ µµ = 39 o True NH, θ µµ = 39 o 10 10 T2K 20 8 8 M. Gosh et al., Normal hierarchy χ 2 χ 2 6 6 Inverted Hierarchy 1401.7243; see 10 also Machado 4 4 et al.; Huber et 2 2 0 al. 0 1 2 3 4 5 NOvA Exposure / Baseline 0 0 -180 -120 -60 0 60 120 180 -180 -120 -60 0 60 120 180 NOvA Coll., 1308.0106 9 δ CP (True) δ CP (True)

  10. ���� � ���� �� ���� ���� ���� ��� ��� � � ��� � ���� �� �� �� �� � � � � � �� � � � �� � �� � Comparisons should be made with great care as they critically depend on: - setup assumed: detector and its performance, beam... - values of oscillation parameters and their errors - treatment of backgrounds and systematic errors. 10

  11. Plan of lecture III ● The problem of leptonic mixing - Current status - Prospects to discover leptonic CPV and measure with precision the oscillation parameters - How to explain the observed mixing structure and Flavour symmetry models ● Neutrinos in cosmology - neutrinos in the Early Universe - sterile neutrinos as WDM - Leptogenesis and the baryon asymmetry 11

  12. Masses and mixing from the mass matrix Neutrino masses and the mixing matrix arises from the diagonalisation of the mass matrix M M = ( U † ) T m diag U † n L = U † ν L Experiments Theory Example . In the diagonal basis for the leptons ✓ a ◆ b M ν = b c 2 b the angle is tan 2 θ = a � c � 1 for a ⇠ c and, or a, c ⌧ b m 1 , 2 ' a + c ± 2 b and masses 2 12

  13. In a model of flavour, both the mass matrix for leptons and neutrinos will be predicted and need to be diagonalised:     e 0 ν eL R ν c ν c ν c e 0 µ 0 τ 0 (¯ eL , ¯ µL , ¯ τ L ) M ν (¯ L , ¯ L , ¯ L ) M ` µ 0 ν µL     R τ 0 ν τ L R     e 0 ν eL R L ) V L V † L M ` V R V † ν c ν c ν c ν U T ν M ν U ν U † e 0 µ 0 τ 0 (¯ L , ¯ L , ¯ µ 0 (¯ eL , ¯ µL , ¯ τ L ) U ∗ ν µL     R R ν τ 0 ν τ L R     ν 1 L e R ν c ν c ν c (¯ 1 L , ¯ 2 L , ¯ 3 L ) M diag , ν (¯ e L , ¯ µ L , ¯ τ L ) M diag ν 2 L µ R     ν 3 L τ R 13 @Silvia Pascoli

  14. In a model of flavour, both the mass matrix for leptons and neutrinos will be predicted and need to be diagonalised:     e 0 ν eL R ν c ν c ν c e 0 µ 0 τ 0 (¯ eL , ¯ µL , ¯ τ L ) M ν (¯ L , ¯ L , ¯ L ) M ` µ 0 ν µL     R τ 0 ν τ L R     e 0 ν eL R L ) V L V † L M ` V R V † ν c ν c ν c ν U T ν M ν U ν U † e 0 µ 0 τ 0 (¯ L , ¯ L , ¯ µ 0 (¯ eL , ¯ µL , ¯ τ L ) U ∗ ν µL     R R ν τ 0 ν τ L R     ν 1 L e R ν c ν c ν c (¯ 1 L , ¯ 2 L , ¯ 3 L ) M diag , ν (¯ e L , ¯ µ L , ¯ τ L ) M diag ν 2 L µ R     ν 3 L τ R in the CC interactions (and oscillations):     ν 1 L ν eL g g τ L ) γ µ U osc  W µ L ) γ µ  W µ ⇒ e 0 µ 0 τ 0 2(¯ e L , ¯ µ L , ¯ L CC = 2(¯ L , ¯ L , ¯ √ ν µL ν 2 L   √ ν τ L ν 3 L U osc = V † L U ν 14 @Silvia Pascoli

  15. Phenomenological approaches Various strategies and ideas can be employed to understand the observed pattern (many many models!). - Mixing related to mass ratios θ 12 , 23 , 13 = function( m e , . . . , m 1 ) m µ m 2 too small - Flavour symmetries - Complementarity between quarks and leptons θ 12 + θ C ' 45 o - Anarchy (all elements of the matrix of the same order). 15 @Silvia Pascoli

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend