non rigid puzzles
play

Non-Rigid Puzzles Or Litany Tel Aviv University Joint work with - PowerPoint PPT Presentation

Non-Rigid Puzzles Or Litany Tel Aviv University Joint work with 1/36 Non-Rigid Puzzles and other stories Or Litany Tel Aviv University Joint work with 1/36 Shape correspondence problem Isometric 2/36 Shape correspondence problem


  1. Non-Rigid Puzzles Or Litany Tel Aviv University Joint work with 1/36

  2. Non-Rigid Puzzles and other stories Or Litany Tel Aviv University Joint work with 1/36

  3. Shape correspondence problem Isometric 2/36

  4. Shape correspondence problem Isometric Partial 2/36

  5. Shape correspondence problem Isometric Partial Different representation 2/36

  6. Shape correspondence problem Isometric Partial Different representation Non-isometric 2/36

  7. Point-wise maps t y j x i X Y Point-wise maps t : X → Y 3/36

  8. Functional maps g f F ( X ) F ( Y ) T Functional maps T : F ( X ) → F ( Y ) Ovsjanikov et al. 2012 3/36

  9. Functional correspondence f ↓ T ↓ g Ovsjanikov et al. 2012 4/36

  10. Functional correspondence ≈ a 1 + a 2 + · · · + a k f ↓ T ↓ g ≈ b 1 + b 2 + · · · + b k Ovsjanikov et al. 2012 4/36

  11. Functional correspondence ≈ a 1 + a 2 + · · · + a k f ↓ ↓ Translates Fourier coefficients from Φ to Ψ T C ↓ ↓ g ≈ b 1 + b 2 + · · · + b k Ovsjanikov et al. 2012 4/36

  12. Functional correspondence ≈ a 1 + a 2 + · · · + a k f ↓ ↓ Φ ⊤ ≈ Translates Fourier coefficients from Φ to Ψ T Ψ k C k ↓ ↓ g ≈ b 1 + b 2 + · · · + b k Ψ ⊤ k g = CΦ ⊤ k f where Φ k = ( φ 1 , . . . , φ k ) , Ψ k = ( ψ 1 , . . . , ψ k ) are Laplace-Beltrami eigenbases Ovsjanikov et al. 2012 4/36

  13. Fourier analysis (non-Euclidean spaces) The Laplacian is invariant to isometries φ 1 φ 2 φ 3 φ 4 ψ 1 ψ 2 ψ 3 ψ 4 5/36

  14. Functional correspondence in Laplacian eigenbases C = Ψ ⊤ k TΦ k ⇒ c ij = � ψ i , Tϕ j � For isometric simple spectrum shapes, C is diagonal since ψ i = ± T φ i 6/36

  15. Part-to-full correspondence Full model Partial query Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 7/36

  16. Partial Laplacian eigenvectors ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8 ζ 9 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 Laplacian eigenvectors of a shape with missing parts (Neumann boundary conditions) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 8/36

  17. Partial Laplacian eigenvectors ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8 ζ 9 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 Laplacian eigenvectors of a shape with missing parts (Neumann boundary conditions) Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 8/36

  18. Partial Laplacian eigenvectors Functional correspondence matrix C Slope ≈ ratio of the two surface areas Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 9/36

  19. Partial functional maps Tf = diag( v ) g solve ⇒ Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 10/36

  20. Partial functional maps Tf = diag( v ) g Optimization problem w.r.t. correspondence and part C ,v � CΦ ⊤ F − Ψ ⊤ diag( v ) G � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min solve ⇒ Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 10/36

  21. Partial functional maps C ,v � CΦ ⊤ F − Ψ ⊤ diag( v ) G � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 11/36

  22. Partial functional maps C ,v � CΦ ⊤ F − Ψ ⊤ diag( v ) G � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − + µ 2 �∇ Y v � dx v dx Y Y Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein and Bronstein 2008 11/36

  23. Partial functional maps C ,v � CΦ ⊤ F − Ψ ⊤ diag( v ) G � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − + µ 2 �∇ Y v � dx v dx Y Y � �� � � �� � area preservation Mumford − Shah Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein and Bronstein 2008 11/36

  24. Partial functional maps C ,v � CΦ ⊤ F − Ψ ⊤ diag( v ) G � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − + µ 2 �∇ Y v � dx v dx Y Y � �� � � �� � area preservation Mumford − Shah Correspondence regularization � � ρ corr ( C ) = µ 3 � C ◦ W � 2 ( C ⊤ C ) 2 (( C ⊤ C ) ii − d i ) 2 F + µ 4 ij + µ 5 i � = j i Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein and Bronstein 2008 11/36

  25. Partial functional maps C ,v � CΦ ⊤ F − Ψ ⊤ diag( v ) G � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − + µ 2 �∇ Y v � dx v dx Y Y � �� � � �� � area preservation Mumford − Shah Correspondence regularization � � ρ corr ( C ) = µ 3 � C ◦ W � 2 ( C ⊤ C ) 2 (( C ⊤ C ) ii − d i ) 2 + µ 4 + µ 5 F ij � �� � i � = j i slant � �� � � �� � rank ≈ r ≈ orthogonality Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein and Bronstein 2008 11/36

  26. Partial functional maps C ,v � CΦ ⊤ F − Ψ ⊤ diag( v ) G � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − + µ 2 �∇ Y v � dx v dx Y Y � �� � � �� � area preservation Mumford − Shah Correspondence regularization � � ρ corr ( C ) = µ 3 � C ◦ W � 2 ( C ⊤ C ) 2 (( C ⊤ C ) ii − d i ) 2 + µ 4 + µ 5 F ij � �� � i � = j i slant � �� � � �� � rank ≈ r ≈ orthogonality F , G = dense SHOT descriptor fields Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein and Bronstein 2008; Tombari et al. 2010 11/36

  27. Structure of partial functional correspondence 4 2 0 0 20 40 60 80 100 C ⊤ C C W singular values 12/36

  28. Non-rigid puzzles Given a full template model, find correspondence to multiple parts Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 13/36

  29. Non-rigid puzzles Given a full template model, find correspondence to multiple parts Segmentation Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 13/36

  30. Non-rigid puzzles Given a full template model, find correspondence to multiple parts Correspondence Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 13/36

  31. Non-rigid puzzles We allow for overlapping, missing, or extra parts Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 14/36

  32. Partial Laplacian eigenvectors Functional correspondence matrix C Slope ≈ ratio of the two surface areas Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 15/36

  33. Slant estimation Key observation: the slope of C is given by ≈ area( N ) area( M ) even with clutter! unknown M N φ j ψ i 1 ξ i 2 Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 16/36

  34. Slant estimation Key observation: the slope of C is given by ≈ area( N ) area( M ) even with clutter! unknown M Upper body to scene ( j, i 1 ) N Upper body to human ( j, i 2 ) Scene to human ( i 1 , i 2 ) φ j ψ i 1 ξ i 2 Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 16/36

  35. Slant estimation Key observation: the slope of C is given by ≈ area( N ) area( M ) even with clutter! unknown M Upper body to scene ( j, i 1 ) N Upper body to human ( j, i 2 ) Scene to human ( i 1 , i 2 ) i 1 ≈ j |M| / | M | i 2 ≈ j |N| / | N | φ j ψ i 1 ξ i 2 Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 16/36

  36. Slant estimation Key observation: the slope of C is given by ≈ area( N ) area( M ) even with clutter! unknown M Upper body to scene ( j, i 1 ) N Upper body to human ( j, i 2 ) Scene to human ( i 1 , i 2 ) i 1 ≈ j |M| / | M | i 2 ≈ j |N| / | N | | M | = | N | φ j ψ i 1 ξ i 2 Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 16/36

  37. Slant estimation Key observation: the slope of C is given by ≈ area( N ) area( M ) even with clutter! unknown M Upper body to scene ( j, i 1 ) N Upper body to human ( j, i 2 ) Scene to human ( i 1 , i 2 ) i 1 ≈ j |M| / | M | i 2 ≈ j |N| / | N | | M | = | N | i 1 = |N | θ = i 2 |M| φ j ψ i 1 ξ i 2 Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 16/36

  38. Functional puzzles p � � C i Φ i ( M i ) ⊤ F i − Ψ ( N i ) ⊤ G i � 2 , 1 min C i ,M i ⊆M ,N i ⊆N i i =1 p p p � � � + ρ corr ( C i ) + ρ part ( M i ) + ρ part ( N i ) i =1 i =0 i =1 M i ∩ M j = ∅ ∀ i � = j s . t . M 0 ∪ M 1 ∪ · · · = M | M i | = | N i | ≥ α |N i | Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016; Litany, Bronstein, Bronstein 2012 17/36

  39. Functional puzzles p � � C i Φ i ( M i ) ⊤ F i − Ψ ( N i ) ⊤ G i � 2 , 1 min C i ,M i ⊆M ,N i ⊆N i i =1 p p p � � � + ρ corr ( C i ) + ρ part ( M i ) + ρ part ( N i ) i =1 i =0 i =1 M i ∩ M j = ∅ ∀ i � = j s . t . M 0 ∪ M 1 ∪ · · · = M | M i | = | N i | ≥ α |N i | 3-way alternating optimization w.r.t. blocks { C i } , { M i } , { N i } p matching problems are solved simultaneously Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016; Litany, Bronstein, Bronstein 2012 17/36

  40. Example of convergence Time (sec) 30 32 34 36 38 40 42 44 46 48 80 90 100 110 120 130 140 150 160 Iteration number Litany, Rodol` a, Bronstein, Bronstein, Cremers 2016 18/36

  41. Example of convergence 19/36

  42. Example of convergence 19/36

  43. Example of convergence 19/36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend