the impact of rare k decays in the impact of rare k
play

The impact of rare K decays in The impact of rare K decays in New - PowerPoint PPT Presentation

The impact of rare K decays in The impact of rare K decays in New Physics searches New Physics searches Federico Mescia INFN-Frascati Golden Modes Standard Model Experiment + + + + 11 E787 1.1 13.0 11


  1. The impact of rare K decays in The impact of rare K decays in New Physics searches New Physics searches Federico Mescia INFN-Frascati Golden Modes Standard Model Experiment − + + + + − → π νν × × 11 E787 1.1 13.0 11 K 8.0 10 14.7 10 − − 1.1 8.9 E949 K → π νν 0 − + 2.9 10 − × < × 11 0.4 7 2.9 10 E391a L − 0.4 → π + − 0 2.8 10 − + × − < × K e e 1.1 11 10 3.7 10 KTeV L − 0.9 → π µ µ + − 3.8 10 − + × − < × 0 0.3 11 10 K 1.5 10 KTeV − L 0.3 1 CKM 2006 - December 12-16, 2006 - Nagoya

  2. 6 6 K L →πνν ÷ K + →πνν: uncertainties at 15% due to present CKM accuracy 6 0 0 0 0 0 0 2 2 2 + + + − →π νν = × 13.0 11 B K ( ) 14.7 10 [E787-E949] − 8.9 2 → π νν ≤ + → π νν + 0 B K ( ) 4.4 ( B K ) [Grosm ann - Nir Bound] L

  3. at 5% uncertainties with CKM updates from Babar/Belle/LHCb 0 0 0 1 1 1 0 0 0 2 2 K L →π 0 νν − K + →π + νν: high-precision discovery lens! 2 large room for New Physics essential exp. info 3

  4. large unexplored room in principle, but 1 is it still possible to expect deviations, despite constraints from the large • amount of processes compatible with the Standard Model? reminder tree-level processes → disfavoured for NP searches, normally (M W / Λ ) 2 ≤ 1% � ( Mind at special cases talk ) Mind at special cases, , Paride’s Paride’s talk FCNC loop processes → suitable for NP, only measured ∆ B= 2, ∆ S= 2 and ∆ B= 1 � transitions K rare decays → s → d coupling and highest CKM suppression → like ε ’ /ε � very clean → like sin2 β 2 in any case, LHC will saturate the room left, won’t it? ATLAS-CMS → new particles at the TeV scale by flavour conserving channels � complementarity information @TeV LHCb at work → B s →µµ and B d →µµ, information on b → s/b → d couplings � K →πνν & K →π �� can give some surprise, with small effects in B and EWPT Moreover, clean probe to higher scale Λ flav ~100 TeV 4 Let’s not forget “The definitive answer is from experiments” G. Galileo G. Galileo

  5. Two classes of “ Beyond SM” scenarios: 1. Minimal Flavour Violation: 2. New sources of Flavour Symmetry breaking arising at the TeV scale flavour breaking induced only by SM Yukawa couplings, Y U & Y D. ( Y: Wilson coefficient at Λ flav » 1 TeV ) • s → d new couplings no longer O ( λ 5 ) suppressed • SM hierarchy of FV couplings: (s → d) MFV = O ( λ 5 ) × [ SM + new d.o.f ] (s → d) BMFV = O ( λ 5 ) × SM + O ( 1 ) × (new d.o.f) • Specific realisations in SUSY, UED, LH, • Many proposed models already killed from EFT present data (B, K, EWPT & DM) • Small deviations in specific models: B (K L →π 0 νν) ≤ O (20%-30%) • One order of magnitude enhancement still → Cecilia & Buras possible in MSSM and LHT B (K L →π 0 νν) ≤ 510 −10 • In specific models, stringent correlations can rise with either B physics ( B → �� , in reach of E391a upgrade B → X �� , B → X νν) or EWPT ( ∆ρ ) Pattern : effects on B( K L →π 0 νν) > B ( K + →π + νν) > B ( K L →π 0 �� ) 5 →π π 0 µµ − − K →π π 0 correlation L → 0 µµ L → 0 ee ee correlation Peculiarity: Peculiarity: K K L K L

  6. Two classes of “ Beyond SM” scenarios: 1. Minimal Flavour Violation: 2. New sources of Flavour Symmetry breaking arising at the TeV scale flavour breaking induced only by SM Yukawa couplings, Y U & Y D. ( Y: Wilson coefficient at Λ flav » 1 TeV ) • s → d new couplings no longer O ( λ 5 ) suppressed • SM hierarchy of FV couplings: (s → d) MFV = O ( λ 5 ) × [ SM + new d.o.f ] (s → d) BMFV = O ( λ 5 ) × SM + O ( 1 ) × (new d.o.f) • Specific realisations in SUSY, UED, LH, • Many proposed models already killed from EFT present data (B, K, EWPT & DM) • Small deviations in specific models: B (K L →π 0 νν) ≤ O (20%-30%) • One order of magnitude enhancement still → Cecilia & Buras possible in MSSM and LHT B (K L →π 0 νν) ≤ 510 −10 • In specific models, stringent correlations can rise with either B physics ( B → �� , in reach of E391a upgrade B → X �� , B → X νν) or EWPT ( ∆ρ ) Pattern : effects on B( K L →π 0 νν) > B ( K + →π + νν) > B ( K + →π + �� ) 6 →π π 0 µµ − − K →π π 0 correlation L → 0 µµ L → 0 ee ee correlation Peculiarity: Peculiarity: K K L K L

  7. Two classes of “ Beyond SM” scenarios: 1. Minimal Flavour Violation: 2. New sources of Flavour Symmetry breaking arising at the TeV scale flavour breaking induced only by SM Yukawa couplings, Y U & Y D. ( Y: Wilson coefficient at Λ flav » 1 TeV ) • s → d new couplings no longer O ( λ 5 ) suppressed • SM hierarchy of FV couplings: (s → d) MFV = O ( λ 5 ) × [ SM + new d.o.f ] (s → d) BMFV = O ( λ 5 ) × SM + O ( 1 ) × (new d.o.f) • Specific realisations in SUSY, UED, LH, • Many proposed models already killed from EFT present data (B, K, EWPT & DM) • Small deviations in specific models: B (K L →π 0 νν) ≤ O (20%-30%) • One order of magnitude enhancement still → Cecilia & Buras possible in MSSM and LHT B (K L →π 0 νν) ≤ 510 −10 • In specific models, stringent correlations can rise with either B physics ( B → �� , in reach of E391a upgrade B → X �� , B → X νν) or EWPT ( ∆ρ ) Pattern : effects on B( K L →π 0 νν) > B ( K + →π + νν) > B ( K + →π + �� ) 7 →π π 0 µµ − − K →π π 0 correlation L → 0 µµ L → 0 ee ee correlation Peculiarity: Peculiarity: K K L K L

  8. Minim al Flavour Violation → U(3) 5 EFT at TeV D’Ambrosio,Giudice,Isidori,Strumia (02) ⋅ 6 6 ∑ c O + + … L = L i i (A ,Q ,H) + Q Y D H Q Y U H + ���� � ����� � Λ eff gauge i i L D R L U R c 2 i fla v Y D & Y U regulate U(3) 5 flavour violation: U(3) 5 flavour group L new d.o.f new d.o.f @ TeV @ TeV SM O 6 → functions of SM fields and Y D -Y U spurions, made invariant of U(3) 5 ≡ SU(3) 5 ⊗ B ⊗ L ⊗ CP. - c 6 → universal and real coef. see Grinstein’s talk 8

  9. Minim al Flavour Violation → U(3) 5 EFT at TeV D’Ambrosio,Giudice,Isidori,Strumia (02) ⋅ 6 6 c O ∑ + + … L = L i i (A ,Q ,H) + Q Y D H Q Y U H + ���� � ����� � Λ eff gauge i i L D R L U R c 2 i fla v K- -rare rare K decays decays 13 operators 13 operators � � ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ) ⎫ + + + + γ νγ ν + γ γ + τγ τ 6 6 * L * V V X s d V V K s d ll c Q Y Y Q H D H c Q Y Y Q H D H µ µ µ µ µ µ µ ⎪ ts td L ts t d V A / L 1 L U U L 2 L U U L L L V A / � � ( ) ( ) ( ) ( ) ⎪ ( ) ( ) ( ) ( ) + γ γ + + τγ γ τ → γ + γ 6 6 ⎬ * * ll V V K b d ll c Q Y Y Q L L c Q Y Y Q L L V V K b s µ L µ µ L µ µ µ 3 L U U L L 4 L U U L L tb ts V A / L tb td V A / L L L ⎪ V A / V A / ( ) ( ) ( ) ( ) ( ) ( ) + µν + + ⎪ σ + γ γ σ µν + γ γ 6 6 * * c D Y Y Y Q F c Q Y Y Q Q Y Y Q V V m C b s F V V B s d s d ⎭ R µ µ µ R µ µ µ 5 D U U v L 6 L U U L L U U L tb ts b 7 v L ts td L L L L ( ) + ∝ D’Ambrosio,Giudice,Isidori,Strumia (02) ... * 2 2 Y Y V V m / m ti t j U U t W ij K- -rare decays rare decays K →πνν →π ε �� 0 K , K , K 1. CKM suppression ( O ( λ 5 )) still on; → → γ �� B X , B X / / s d s d 2. the X coefficient unbounded from B processes or ε K 2 β * 2 → π νν → π νν V V X sin 0 0 B K ( ) B K ( ) [ ] ∝ × + ε ts td S M � L L 1 sign X + → π νν + [ ] + → π νν + c 2 + ε B K ( ) B K ( ) * V V X 1 sign X SM ts t d c 9

  10. → π νν → π νν 0 0 MFV B K ( ) B K ( ) [ ] = × + ε L L 1 sign X model + → π νν + + → π νν + c B K ( ) B K ( ) independent ap. MFV SM 10 MFV enhancement: B ( K L →π 0 νν) ≤ 4.6 B SM B ( K + →π + νν)/ B ( K L →π 0 νν) ∼ SM

  11. MFV- Specific Scenarios In a given model implementation, X bounded trough EWPT & B data. Deviations from SM can get smaller 1 . MFV- Phenom enological Model (CMFV) Buras,Gambino,Gorbahn,Jäger,Silvestrni (00) • only Standard Model operators • box and g-peng. d.o.f frozen Bobeth,Bona,Buras,Ewerth,Pierini,Silvetrini,Weiler (05) to their SM value ⎫ 2 →πνν → → γ ≅ ⎧ ⎛ ⎞ e f f ⎪ ⎪ = ≅ B ( K ) X B B ( X ) C Y E 0 Y X ⎯⎯⎯⎯⎯ → ⎯⎯⎯ ⎯⎯ → s 7 ⎬ ⎨ ⎜ ⎟ Model d. Model d. →π → ⎪ ⎝ ⎠ �� Z ⎩ ⎪ → → B K ( ) Y Z , , E �� ef f ⎭ B B ( X ) Y , , , Z E C s 7 X -> constrained by B processes X -> constrained by B processes = + νν ll Y X B - B gauge invariant ( ) 1 νν = + - 4 Z X D B s.d. couplings γ 4 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend