rare rare rare earth rare earth earth based half earth
play

Rare Rare Rare-earth Rare-earth earth-based half earth-based - PowerPoint PPT Presentation

Rare Rare Rare-earth Rare-earth earth-based half earth-based half based half-Heusler based half-Heusler Heusler Heusler compounds as prospective materials compounds as prospective materials p p p p p p for thermoelectric


  1. Rare Rare Rare-earth Rare-earth earth-based half earth-based half based half-Heusler based half-Heusler Heusler Heusler compounds as prospective materials compounds as prospective materials p p p p p p for thermoelectric applications for thermoelectric applications Dariusz Kaczorowski Dariusz Kaczorowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroc ł aw, Poland

  2. Co-workers Co workers K. Gofryk , T. Plackowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroc ł aw A. Leithe-Jasper, Yu. Grin Max Planck Institut Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden

  3. Outline Outline � Motivation: � Motivation: Heusler phases Heusler phases thermoelectricity � Bulk properties of RE PdSb and RE PdBi � B lk ti f RE PdSb d RE PdBi ( RE = Y, Gd, Dy, Ho, Er): Sample characterisation Magnetic behavior g Heat capacity Electrical transport p � Thermoelectric performance � Summary

  4. Heusler phases Heusler phases Pd Pd Er Er Er Er Sb Sb ErSb ErPdSb ErPd 2 Sb Compound Co pou d St uctu e Structure Space g oup Space group Atomic positions to c pos t o s type Er Sb Pd ErSb NaCl 4b, (½ ½ ½) 4a, (0 0 0) - Fm 3 m ErPdSb MgAgAs 4b, (½ ½ ½) 4a, (0 0 0) 4c, (¼ ¼ ¼) F 3 4 m ErPd 2 Sb E Pd Sb M C MnCu 2 Al Al 4b (½ ½ ½) 4b, (½ ½ ½) 4a, (0 0 0) 8c, (¼ ¼ ¼) 4 (0 0 0) 8 (¼ ¼ ¼) Fm 3 m

  5. Heusler phases Heusler phases – properties on request Pierre 1997 Pierre, 1997 • MI transition • itinerant magnetism • itinerant magnetism � � metal ↔ semiconductor • localized magnetism • Kondo effect Kondo effect � TIP ↔ CW paramagnet • heavy fermions • superconductors p • half metals � weak AF ↔ strong F • semimetals • magnetic semiconductors • giant magnetoresistance � simple metal ↔ SCES • shape memory alloys h ll • thermoelectrics

  6. Thermoelectric materials e oe ec c e s heat → electricity Seebeck effect hybrid automobile applications, power generation from waste heat (catalytic converters, motor blocks, heaters, high bl k h hi h temperature furnaces, power plants) … electricity → l t i it cooling P lti Peltier effect ff t spot cooling of electronic equipment, infrared detectors, car air-conditioners, refrigerators solar powered coolers refrigerators, solar-powered coolers … S.Williams, www.thermoelectrics.com ☺ reliable ( ☺ reliable (no mechanical parts) ☹ high cost ☹ high cost h i l t ) ☺ environment friendly ☹ low efficiency

  7. Thermoelectrical performance Thermoelectrical performance spot cooling electric power generation T c T h p p n n p n T h T c I I I - + + coefficient of efficiency (COE) coefficient of performance (COP) ( )( ) 1 γ T − T T − T γ − c h h c φ = η = 1 ( ( )( )( ) ) 1 T − T + γ γ T + γ γ T ( ( ) 2 ) 2 γ γ = 1 1 + + ZT ZT h h c c c c h h figure of merit

  8. Thermoelectrical performance Thermoelectrical performance figure of merit : figure of merit : 2 2 2 2 σ S S T T S S ZT = = κ L 2 TS ZT ZT = S = L 1/2 = 157 µ V/K ⇒ ZT = 1 κρ S = (2L) 1/2 = 225 µ V/K ⇒ ZT = 2 S – Seebeck coefficient κ – thermal conductivity state-of-the-art commercial devices ρ – electrical resistivity e.g. p-type Bi x Sb 2-x Te 3-y Se y ZT ~ 1 for T = 200 - 400 K RECORD VALUES p-type alloy Bi 2 Te 3 /Sb 2 Te 3 /Sb 2 Se 3 : ZT = 1.14 at T = 300 K 2 3 2 3 2 3 quantum dots lattice PbTe/PbSe 0.98 Te 0.02 : ZT = 2.0 at T = 550 K thin-film superlattice Bi 2 Te 3 /Sb 2 Te 3 : ZT = 2.4 at T = 300 K

  9. Half Heusler phases Half-Heusler phases

  10. RE Pd X half-Heusler compounds RE Pd X half Heusler compounds X = Bi X = Sb YPdBi YPdSb GdPdBi DyPdSb DyPdBi HoPdSb H PdBi HoPdBi ErPdSb dSb E PdBi ErPdBi

  11. Sample characterization S p e c c e o 022 ErPdSb ErPdSb ErPdSb dSb 224 111 002 004 113 222 222 024 024 044 044 133 133 333 ErPdSb � single phase samples � homogeneous stoichiometry � homogeneous stoichiometry � atomic disorder not detectable

  12. Magnetic properties g p p Compound T N (K) θ p (K) µ eff ( µ B ) weak AF at low temp. Curie-Weiss behavior YPdSb D - - ≈ µ teo for RE 3+ µ eff ≈ µ DyPdSb DyPdSb 3.3 3.3 -11.5 11.5 10.5 10.5 small negative θ p small negative θ weak CEF effect HoPdSb 2.0 -9.0 10.7 ErPdSb P -4.2 9.4 1.3 HoPdSb 20 u/mol) 1.2 YPdBi D - - u) mol/emu χ (emu 15 1.1 T N = 2 K GdPdBi 13.5 -36.5 8.0 100 1.0 1.5 2.0 2.5 3.0 3.5 4.0 80 10 -1 (m T (K) g) σ (emu/g 60 60 DyPdBi 3.5 -11.9 10.7 40 χ 5 20 T = 1.7 K HoPdBi 2.2 -6.1 10.6 0 B 0.1 T B = 0.1 T 0 1 2 3 4 5 B (T) B (T) 0 0 50 100 150 200 250 300 ErPdBi P -4.6 9.2 T (K)

  13. Magnetic behavior g e c be v o 30 1.8 B = 0.1 T 1.5 ol) 25 25 χ (emu/mo l/emu) 1.2 µ eff ( µ B ) θ p (K) 0.9 20 0.6 0.3 ErPdSb E PdSb 9 43 9.43 -4.2 4 2 -1 (mol 15 0 5 10 15 20 25 30 T (K) 10 ErPdBi 9.20 -4.6 ErPdBi χ χ 5 B = 0.1 T 0 0 50 100 150 200 250 300 T (K) � no magnetic ordering down to 1 72 K � no magnetic ordering down to 1.72 K � Curie-Weiss behaviour: µ eff ≈ µ teo for Er 3 (9.58 µ B ) , small negative θ p for Er 3+ (9 58 µ ) small negative θ µ ≈ µ � weak CEF effect

  14. Heat capacity e c p c y 80 ErPdSb ( ( ) ) C C T T = C C + + C C + + C C 10 p el ph CEF 60 8 mol K) l K) 6 ( ( ) ) C C el T T = = γ γ T T (J/mol C p (J/ 4 40 2 3 Θ T ⎛ ⎞ D 4 YPdSb x ∫ ∫ T e x dx 0 ⎜ 0 4 8 12 16 20 ( ( ) ) 9 C T = Nk ⎜ ⎜ T (K) T (K) 2 2 ph ph B B 20 20 ( ( 1 1 ) ) C p x x ⎝ ⎝ Θ ⎠ ⎠ Θ e − Fit : Θ D = 264 K D 0 2 γ = 0.22 mJ/molK ⎛ ⎞ ∑ ∑ n 1 R ⎜ ⎜ 0 2 / ( ( ) ) − E k T C C T T = = E E e e i i B 0 0 50 50 100 100 150 150 200 200 250 250 300 300 ⎜ ⎜ 2 2 CEF i k T Z ⎝ ⎠ T (K) B 1 i = 2 ⎛ ⎞ n ∑ ∑ 1 R ⎜ ⎜ / − E k T − E E e � no phase transition down to 2 K i i B B ⎜ 2 2 i k T Z ⎝ ⎠ B 1 i = � upturn below 6 K ∑ ∑ n � pronounced CEF Schottky effect − E E k k T T Z = e i B 0 i =

  15. Schottky specific heat Sc o y spec c e Er Er 3+ Er Er 3+ 3+ : 4 I 3+ : : 4 I 15/2 15/2 ErNiSb doublet ground state 220 K 166 K 108 K 92 K � CEF scheme: doublet-quartet- doublet-quartet-quartet � t t l � total splitting of 186 K litti f 186 K � first excited state at 61K Karla et al., 1999

  16. Excess specific heat cess spec c e 10 ErPdSb CEF CEF mol K) 8 5 6 6 C (J/m 4 /mol K) 3 4 ? ? Schottky ? ∆ C ∆ C (J 2 2 1 0 0 0.0 0.1 0.2 0.3 10 100 -2 (K -2 ) T (K) T magnetic ordering at T < 2 K ? ? ? nuclear contribution l ib i unlikely

  17. Heat capacity in magnetic field e c p c y g e c e d 2.1 E PdSb ErPdSb 1.8 2 ) B = 0 T ol K B = 1 T � upturn transforms 1.5 B = 2 T B = 4 T T (J/m into maximum 1.2 B = 6 T B = 9 T B 0.9 � T max increases max C p /T 0.6 for rising B 0.3 0.0 0 5 10 15 20 25 30 T (K) � clear Zeeman effect e.g. local distortion, internal-field distribution, …

  18. Electrical resistivity ec c es s v y � semimetallic character - magnitude - temperature dependence � � anomalies at low temperatures li t l t t for both AF and P systems !!!

  19. Electrical resistivity ec c es s v y ⎛ ⎛ − E g ⎞ ⎞ 1 1 ⎜ ⎜ exp g = σ + B ⎜ ⎟ E g = 30-100 meV a 2 ⎝ ⎠ ρ ( Τ ) k T B

  20. Electronic structure LuPdSb indirect gap Γ – X : ∆ ≈ 0 1 eV ∆ ≈ 0.1 eV direct gap Γ – Γ : ca. 0.4 eV valence bands at Γ : parabolic with different curvature conduction band at X : E F nonparabolic → heavy and light holes in p-type material → different effective masses different effective masses of doped electrons and doped holes Lu 4f bands near E : bands near E F : strongly hybridized Pd-d and Lu-d states Mastronardi et al., 1999

  21. Co duc v y Conductivity model ode Berger, 2003 DOS total resistivity narrow gap E slightly above E narrow gap E g slightly above E F ( ) ρ + ρ T � metallic conductivity at LT 0 ( ) ph ρ T = � activation behaviour at HT ( T ( ) ) n n T occupation of states ( ( ) ) ( ( ) ) ( ( ) ) Fermi-Dirac distribution Fermi Dirac distribution n n T T = = n n T T n n T T + + n n 0 n p 1 − ⎡ ⎤ ⎛ ⎞ E − E ⎡ ⎤ ⎛ ⎞ ⎜ ⎟ ( ) exp 1 E ⎢ ⎥ F f E = + ⎜ ⎜ ( ( ) ) ln 1 exp p g ⎢ ⎢ ⎥ ⎥ n T = − NE + Nk T + ⎜ ⎜ ⎝ ⎝ ⎠ ⎠ k B k T T ⎣ ⎣ ⎦ ⎦ n n g g B B ⎝ ⎠ ⎣ k T ⎦ B ( ) ln 2 n T = − Nk T carrier concentration p B ∫ ∞ Bloch-Grüneisen law ( ) ( ) ( , ) n T = N E f E T dE n E Θ T F 5 D ⎛ ⎛ ⎞ ⎞ ∫ ∫ 5 ∫ ∫ ∞ E E T T z z dz dz F F ⎜ ( ) 4 [ ] ( ) ( ) 1 ( , ) ρ T = R ⎜ ⎟ n T = N E − f E T dE ph ( 1 )( 1 ) z − z p ⎝ ⎠ Θ e − − e D − 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend