combined texture structure microstructure analysis using
play

Combined Texture-Structure- Microstructure analysis using - PowerPoint PPT Presentation

Combined Texture-Structure- Microstructure analysis using diffraction matriaux cristallins ou micro-cristalliss proprits anisotropes Elaboration de matriaux de complexit croissante, applications de + en + spcifiques Dsir


  1. Combined Texture-Structure- Microstructure analysis using diffraction matériaux cristallins ou micro-cristallisés à propriétés anisotropes ● Elaboration de matériaux de complexité croissante, applications de + en + spécifiques ● Désir d' optimisation et de compréhension des anisotropies physico-chimiques de matériaux

  2. Métallurgie et Géophysique Méthodes d’analyses Propriétés anisotropes - diffraction - mécaniques - spectroscopiques - ferro/piezo-électriques (EXAFS, ESR) QTA - supraconductrices - conductrices anioniques - aimantation Modes de croissance (épitaxie) Biologie (mollusques) Optimisation d’élaboration

  3. Summary • Usual up-to-date approaches for polycrystals – Texture – Structure-Microstructure – Problems on ultrastructures • Combined approach – Experimental needs – Methodology-Algorithm – Ultrastructure implementation – Case studies • Future trends

  4. Texture Analysis X=010 Y {hkl} pole figure measurement + corrections: dV( ) 1 c χφ β = P( ) si n d d α χφ χ χ φ V 4 π Z=001 X Y=100 S-space Y-space X=010 Y We want f(g) (ODF): with g = ( α , β , γ ) a c dV(g) 1 β α = f (g) dg Z=001 2 V 8 X Y=100 π γ b G-space

  5. We have to invert (Fundamental equation of Texture Analysis): ! 1 ~ P ( y ) = f(g) d ∫ ϕ hkl 2 π ! hkl // y < > ⎡ ⎤ ⎢ ⎥ n 0 f ( g ) f ( g ) WIMV refinement method: n 1 f ( g ) N + ⎢ ⎥ = Williams-Imhof-Matthies-Vinel ! 1 ⎢ ⎥ ( ) ⎥ n P ( y ) ∏ I ⎢ hkl ⎣ ⎦ hkl

  6. Recalculation of pole figures or Bunge - Esling inverse pole figures from the m , n m , n f ( g ) C T ( g ) ODF ∑ ∑ ∑ = ! ! ! m n path Ruer - Baro (vector method) ! f(g) P ( y ) = σ ! path h Helming (Components) γ− sections f ( g ) S ( g , s , FWHM ) ∑ ∑ = i phases i ● ● Pawlik (ADC) ● ● {hkl} pole figure {001} pole figure for a cubic crystal system

  7. ODF Completion - Several {hkl} pole figures needed to calculate f(g) - Each f(g) cell (98000 at total) needs 3 paths from experiments - More than 3 is better ! - Spectrometer space is complicated (5 angles, 2 shaded area) - defocusing (high χ ) - blind area (low χ ) - increase at low ω , where high n,Z A intensity peaks are (LP factor) ϕ 2 θ C 0 τ Y S ω 2 θ min χ n GR Needs for a tool for an automatic search X S Z S of the best experimental conditions:

  8. Fortran code to estimate the orientation space completion: τ , ω , χ , φ and CPS ranges, 2 θ hkl’s, cradle shades (in BEARTEX) Quartz sample BETA > 0| 1| τ = 0°; ω = 7° 2| 3| 4| 5| BETA >0 --- Path number 3| * 4| 5| 6| τ = 0°; ω = 17° 7| 8| 9| 10| 11| 12| BETA >0 -- 15| * 16| * τ = 40°; ω = 37° 17| * 18| * 19| * 20| * 21|

  9. Usual Structure-Microstructure Analysis (Full pattern fitting, Rietveld Analysis) Si 3 N 4 matrix with SiC whiskers: I(2 ) = I ( 2 ) S ( 2 ) bkg(2 ) Random powder: ∑ θ θ θ + θ hkl, phases hkl, phases hkl, phases

  10. L 2 I ( 2 ) S F m P P θ = hkl hkl hkl hkl 2 V c S: scale factor (phase abundance) F hkl : structure factor (includes Debye-Waller term) V c : unit-cell volume F hkl : texture parameter (March-Dollase …) I S S ( 2 ) S ( 2 ) * S ( 2 ) θ = θ θ hkl hkl hkl S I : instrumental broadening S S : Sample aberrations crystallite sizes (iso. or anisotropic) rms microstrains ε

  11. Problems on ultrastructures Ferroelectric film (PTC) Sum diagram Electrode (Pt) Antidiffusion barrier (TiO 2 ) Oxide (native, thermally grown) SC Substrate (Si) - Strong intra- and inter-phase overlaps 001/100 PTC 011/110 PTC + Si ( λ /2) 111 PTC + 111 Pt - Mixture of very strong and lower textures - texture effect not fully removable: structure - structure unknown: texture

  12. Direct Integration of Peaks up to recently: best existing technique for texture Integration + corrections + ODF refinement Limited nb of PFs (polyphase) Only access to PTC, badly ! No control of ultrastructure parameters

  13. Combined approach Experimental needs Mapping Spectrometer space for correction of: - instrumental resolution - instrumental misalignments ω = 20° ω = 40° 60 ° 60 ° χ χ 0° 0°

  14. Methodology-Algorithm Correction of intensities for texture: I hkl (2 θ , χ , ϕ ) = I hkl (2 θ ) P hkl ( χ , ϕ ) Rietveld WIMV Structure, Microstructure Texture Pole figure extraction (Le Bail method): P hkl ( χ , ϕ ) Rietveld and WIMV algorithm are alternatively used to correct for each others contributions: Marquardt non- linear least squares fit is used for the Rietveld.

  15. Polyphase texture analysis: Direct Integration vs Combined Dolomite/Calcite mixture: well separated peaks Dolomite a) Calcite Direct Combined Textures show 0.2 mrd difference at max. only texture reliability factors lowered by 3 % + microstructural parameters

  16. Phase analyses: Structures are found the ones in litterature refined cell parameters: dolomite a=4.8063(4)Å c=16.0098(4)Å calcite a=4.9755(4)Å c=16.998(3)Å Phase quantity: Combined approach: dolomite 93.7 % calcite 6.3 % Optically/Chemically:dolomite 90 % calcite 10 % + dolomite mean crystallite size: 2000(80) Å

  17. Quantitative phase and texture-analysis ceramic-matrix composites Goodness of fit: 1.806665 Rwp (%): 17.10033 Si 3 N 4 matrix with SiC whiskers Rb (%): 12.54065 Rexp (%): 9.465139

  18. Si 3 N 4 SiC Vol. fraction (%): 75.8 24.2 Part. Size (Å): 3800 2200 rms micro-strains (%): 4.2 10 -4 2.8 10 -4

  19. Ultrastructure implementation Corrections are needed for volumic/absorption changes when the samples are rotated. With a CPS detector, these correction factors are: top film ( ( ) ) ( ( ) ) C g 1 exp Tg / cos / 1 exp 2 T / sin cos = − − µ χ − − µ ω χ 1 2 χ ( ( ) ) ( ( ) ) cov. layer top film ' ' ' ' C C exp g T / cos / exp 2 T / sin cos ∑ ∑ = − µ χ − µ ω χ 2 i i i i χ χ Gives access to individual Thicknesses in the refinement

  20. PTC/Pt/TiO 2 /SiO 2 /Si-(100) PTC a = 3.945(1) Å c = 4.080(1) Å T = 4080(10) Å a = 3.955(1) Å t iso = 390(7) Å T' = 462(4) Å Pt ε = 0.0067(1) t' iso = 458(3) Å ε ' = 0.0032(1)

  21. WIMV vs Entropy modified WIMV approach Better refinement with E- WIMV: WIMV - lower reliability factors (structure and texture) - better high density level reproduction E-WIMV Texture Pt PTC Pt PTC Texture Texture RP 0 RP 0 Rw R Bragg Index Index (m.r.d. 2 ) (m.r.d. 2 ) (%) (%) (%) (%) WIMV 48.1 1.3 18.4 11.4 12.4 7.7 EWIMV 40.8 2 13.7 11.2 7 4.7

  22. Polarised-EXAFS and QTA correlations: textured self-supporting films of clays Main Collaborators: A. Manceau, B. Lanson: LGIT, Grenoble, France

  23. µ − µ 0 χ = µ Z 0 isolated atom ε µ = 0 ρ α h ν α θ ij φ R ij Y Ω Film surface absorbing atom X backscattering atom

  24. Amplitude of EXAFS spectra (then RSF): Stern & Heald, 1983 plane-wave approx., single-scattering processes ! ! 2 j ( k , ) 3 cos ( k ) ∑ χ θ = θ χ ij j iso j ! N j 2 j 3 cos ( k ) ∑∑ = θ χ ij iso j i 1 = j: nb of neighbouring atomic shell N j : nb of backscatterers in the j th shell j χ taken at magic angle ( α =35.3°) for fibre textures iso ➯ P-EXAFS: provides directional structural information

  25. ! ! ! j ( k ) ( k , ) ( k ) Isotropic powder: ∑ χ = χ θ = χ ij iso j For fibre texture (around Z): signal averaged on Ω 2 2 2 π 1 cos sin α φ 2 2 2 2 cos cos d cos sin θ = ∫ θ Ω = φ α + ij ij 2 2 π 0 which allows to calculate the real number of j th atoms: 2 2 cos sin ⎡ ⎤ α φ 2 2 N 3 N cos sin = φ α + ⎢ ⎥ obs real 2 ⎣ ⎦

  26. N obs / 3 N real correction factor 2.8 1.6 80 0.20 2.0 2.4 2.6 2.2 0.40 1.2 2 magic angles: 0.80 60 0.60 1.4 α = 35.3° 1.8 α ° 1 φ = 54.7° 40 1 0.80 1.2 20 0.60 0.40 0.20 1.4 0 0 20 40 60 80 φ °

  27. P-EXAFS of clays Beam direction α = 0° α = 90° β tet Absorber β tet ε Mg, Al, Fe c* Si, Al Oct-Tet: max Oct-Tet: min Oct-Oct: 0 Oct-Oct: max ε

  28. P-EXAFS oscillations of Garfield nontronite Fe K-edge High quality range up to 14-15Å -1 k 3 χ Powder spectra Strong α dependence = strong texture k (Å -1 )

  29. Texture experiments Garfield 1.8 001 PVO 1.6 1.4 Intensity (a.u.) 1.2 1.0 004 0.8 11+/-3 0.6 0.4 0.2 0.0 200 020 35 ρ ° 130 110 70 5 10 15 20 θ °

  30. OD-WIMV refinement Crystal system : a=5.279Å, b=9.14Å, c=12.563Å, β =99.25°, RP0 = 16.9% RP1 = 10.1% Rw0 = 6.8% Rw1 = 5.6% 004/113/11-3 = 0.85/0.1/0.05 020/110 = 0.7/0.3 200/130 = 0.4/0.6 <001>* fibre, fibre axis ⊥ film plane

  31. Octahedra flattening angle ψ (Edge-sharing octahedral structures) ψ c* For ideally textured films: 54.4° (Stöhr, NEXAFS spect., 1992) O 1 ( )( ) 2 2 1 3 sin 1 3 cos 1 + α − ψ − I 2 α = Fe 1 a I ( ) 2 1 3 cos 1 0 − ψ − 2 Flattened Regular

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend