bound state calculation in three body systems with short
play

Bound State Calculation in Three-Body Systems with Short Range - PowerPoint PPT Presentation

Building Blocks Doublet S -wave and Bound States Triton Charge Radius Bound State Calculation in Three-Body Systems with Short Range Interactions Jared Vanasse Ohio University May 30, 2016 Jared Vanasse Bound State Calculation in Three-Body


  1. Building Blocks Doublet S -wave and Bound States Triton Charge Radius Bound State Calculation in Three-Body Systems with Short Range Interactions Jared Vanasse Ohio University May 30, 2016 Jared Vanasse Bound State Calculation in Three-Body Systems with Short Range

  2. Building Blocks Doublet S -wave and Bound States Triton Charge Radius Ingredients of EFT � π ◮ For momenta p < m π pions can be integrated out as degrees of freedom and only nucleons and external currents are left. ◮ For any effective (field) theory write down all terms with degrees of freedom that respect symmetries. ◮ Develop a power counting to organize terms by their relative importance. ◮ Calculate respective observables up to a given order in the power counting. Jared Vanasse Bound State Calculation in Three-Body Systems with Short Range

  3. Building Blocks Doublet S -wave and Bound States Lagrangian Triton Charge Radius The two-body Lagrangian to N 2 LO in EFT � π is  � n +1  � � � 1 � � � ∇ 2 ∇ 2 + γ 2 L 2 = ˆ N † ˆ t †  ∆ t − t  ˆ N + ˆ i ∂ 0 + i ∂ 0 + c nt t i i 2 M N 4 M N M N n =0  � n +1  � 1 � � ∇ 2 + γ 2  ∆ s −  ˆ s † s + ˆ c ns i ∂ 0 + s a a 4 M N M N n =0 � � � � N T ¯ t † i ˆ N T P i ˆ a ˆ P a ˆ s † ˆ + y t N + H . c . + y s ˆ N + H . c . . ◮ c 0 t , c 0 s -range corrections Jared Vanasse Bound State Calculation in Three-Body Systems with Short Range

  4. The LO dressed deuteron propagator is given by a bubble sum c (0) c (1) (LO) 0 t 0 t (N 2 LO) (NLO) Im[ p ] 3 S 1 ( S − matrix) ( Z -parametrization) At m π LO coefficients are fit to reproduce the deuteron iγ t ( γ t ≈ 45MeV) pole and at NLO to Re[ p ] reproduce the residue about the deuteron pole (Phillips,Rupak, and Savage (2000 )).

  5. Doublet S-wave and Bound state The three-body Lagrangian is � � �� � ∇ 2 + γ 2 L 3 = ˆ t ˆ ψ † Ω − h 2 (Λ) i ∂ 0 + ψ 6 M N M N � � ∞ � ω ( n ) t i − ω ( n ) t 0 ˆ ψ † σ i ˆ s 0 ˆ ψ † τ a ˆ N ˆ + N ˆ + H . c .. s a n =0 where ψ is an auxiliary triton field. The LO triton vertex function G 0 ( E , p ) is given by following coupled integral equations (Hagen, Hammer, and Platter (2013)) G 0 ( E , p ) = � B 0 + K ℓ =0 ( q , p , E ) ⊗ G 0 ( E , q ) , 0

  6. Building Blocks Doublet S -wave and Bound States Triton Charge Radius The LO kernel in cluster-configuration (c.c) space is � q 2 + p 2 − M N E − i ǫ � � 1 � 0 ( q , p , E ) = − 2 π − 3 K ℓ qp Q 0 − 3 1 qp � D t ( E ,� � q ) 0 . × 0 D s ( E ,� q ) The LO triton vertex function and the inhomogeneous term � B 0 are c.c. space vectors given by � G 0 ,ψ → Nt ( E , p ) � � � 1 , � G 0 ( E , p ) = B 0 = . 1 G 0 ,ψ → Ns ( E , p ) The ⊗ operator is given by � Λ 1 dqq 2 A ( q ) B ( q ) . A ( q ) ⊗ B ( q ) = 2 π 2 0 Jared Vanasse Bound State Calculation in Three-Body Systems with Short Range

  7. Building Blocks Doublet S -wave and Bound States Triton Charge Radius The NLO ( G 1 ( E , p )) and NNLO ( G 2 ( E , p )) triton vertex functions are 1 1 1 1 1 1 2 1 2 2 2 1 2 2 Jared Vanasse Bound State Calculation in Three-Body Systems with Short Range

  8. Building Blocks Doublet S -wave and Bound States Triton Charge Radius The NLO triton vertex function is � � p 2 � + K ℓ =0 G 1 ( E , p ) = G 0 ( E , p ) ◦ R 1 ,� ( q , p , E ) ⊗ G 1 ( E , q ) , E − p 0 2 M N and the NNLO triton vertex function � � � � p 2 � G 2 ( E , p ) = G 1 ( E , p ) − c 1 ◦ G 0 ( E , p ) ◦ R 1 E − ,� p 2 M N + K ℓ =0 ( q , p , E ) ⊗ G 2 ( E , q ) , 0 where  � �  � Z t − 1 1 p 2 − M N p 0 − i ǫ γ t + 4 �   2 γ t  � �  R 1 ( p 0 ,� p ) = �  ,  Z s − 1 p 2 − M N p 0 − i ǫ 1 4 � γ s + 2 γ s and � Z t − 1 � c 1 = . Z s − 1 Jared Vanasse Bound State Calculation in Three-Body Systems with Short Range

  9. Building Blocks Doublet S -wave and Bound States Triton Charge Radius Defining Σ 0 . The dressed triton propagator is given by the sum of diagrams Σ 0 Σ 0 Σ 0 which yields i ∆ 3 ( E ) = i Ω − i Ω H LO Σ 0 ( E ) i Ω + · · · 1 = i 1 − H LO Σ 0 ( E ) , Ω where H LO = − 3 ω 2 π Ω = − 3 ω 2 π Ω = 3 ω t ω s t s π Ω . Jared Vanasse Bound State Calculation in Three-Body Systems with Short Range

  10. Building Blocks Doublet S -wave and Bound States Triton Charge Radius Defining the functions 1 1 Σ 1 2 2 Σ 2 The NNLO triton propagator is Σ 1 H NLO Σ 0 ( NLO ) Σ 2 H NLO Σ 1 H NNLO Σ 0 Σ 1 Σ 1 2 H NLO Σ 0 Σ 1 ( H NLO ) 2 Σ 0 Σ 0 h 2 ( NNLO ) Jared Vanasse Bound State Calculation in Three-Body Systems with Short Range

  11. Calculating three-body forces and wavefunction renormalization of triton ◮ Method 1: Fix triton pole position at each order (Fixes three-body forces if binding energy fit to). Calculate residue about triton pole at each order to get triton wavefunction renormalization. ◮ Method 2: Note that in general triton pole and wavefunction renormalization given by perturbative expansion 1 − H Σ( E ) = 1 − ( H 0 + H 1 + · · · )(Σ 0 ( B 0 + B 1 + · · · ) + Σ 1 ( B 0 + B 1 + · · · ) + · · · ) = 0 0 ( E ) − Σ ′ 1 1 1 1 ( E ) Z ψ = Σ ′ ( E ) = 1 ( E ) + · · · = 0 ( E ) + · · · Σ ′ 0 ( E ) + Σ ′ Σ ′ Σ ′

  12. Properly Renormalized Vertex Function Ensuring that triton propagator has pole at triton binding energy gives conditions 1 H LO = , H LO Σ 1 ( B ) + H NLO Σ 0 ( B ) = 0 , Σ 0 ( B ) � � H NNLO + 4 3( M N B + γ 2 t ) � H LO Σ 2 ( B )+ H NLO Σ 1 ( B )+ Σ 0 ( B ) = 0 . H 2 Triton wavefunction renormalization is residue about pole leads to triton vertex functions � � � π Z LO Z LO Γ 0 ( p ) = ψ G 0 ( B , p ) , = ψ Σ ′ 0 ( B ) � � � Σ ′ G 1 ( B , p ) − 1 1 Z LO Γ 1 ( p ) = G 0 ( B , p ) . ψ Σ ′ 2 0 � � Σ ′ G 2 ( B , p ) − 1 1 Z LO Γ 2 ( p ) = G 1 ( B , p ) ψ Σ ′ 2 0 � � � � Σ ′ � 2 Σ ′ Σ 2 3 − 1 − 2 3 M N � 1 2 0 + H 2 G 0 ( B , p ) . Σ ′ Σ ′ Σ ′ 8 2 0 0 0

  13. Triton Charge Form Factor Charge form factor of triton at LO given by three diagrams � � 1 + τ 3 � � ˆ ˆ ˆ N † i ∂ 0 + ie A 0 N 2 (a) (b) (c) NLO and NNLO triton charge form factor 2 2 2 1 1 1 (a) (b) (c) 1 1 1 1 1 1 (a) (b) (c) 1 1 (d) (e) (d) (e) (f) h 2 (g)

  14. Building Blocks Doublet S -wave and Bound States Triton Charge Radius LO triton charge form factor given by � d 4 k � d 4 p � 0 ( E , � p ) χ j ( E , � K , � p ,� Z LO (2 π ) 4 G T P , p 0 ,� P , p 0 , k 0 ,� k ) ψ (2 π ) 4 j = a , b , c × G 0 ( E , � K , k 0 ,� k ) , where G 0 ( E , � K , k 0 ,� k ) is LO triton vertex function in a frame boosted by momentum � K G 0 ( E , � K , k 0 ,� k ) = � B 0 � � � �� � � K · � � k 2 q 2 q , k , 2 k � D (0) + 3 B 0 + k 0 − + ,� R 0 B 0 − q 3 M N 2 M N 2 M N ⊗ G 0 ( B 0 ,� q ) . In the Breit frame we have � Q = � P − � K . Jared Vanasse Bound State Calculation in Three-Body Systems with Short Range

  15. Focusing on diagram (a) we find � � � � µα p − 2 a ( E , � K , � p ,� � � χ ji νβ = ie (2 π ) 4 δ ( k 0 − p 0 ) δ (3) P , p 0 , k 0 ,� k ) k − � Q 3 � 2 � k + 2 i 3 E + k 0 ,� � × i D (0) K ( � k − 1 3 � 3 K ) 2 1 + i ǫ 3 E − k 0 − 2 M N � 1 + τ 3 � µ i δ α β δ ij . × ( � k − 2 3 � Q − 1 3 � 2 P ) 2 1 3 E − k 0 − + i ǫ ν 2 M N Projecting in the doublet S-wave channel gives � � p − 2 χ a ( E , � K , � p ,� k ) = ie (2 π ) 4 δ ( k 0 − p 0 ) δ (3) � � P , p 0 , k 0 ,� k − � Q 3 � 2 � k + 2 i 3 E + k 0 ,� � × i D (0) K 3 ( � k − 1 3 � K ) 2 1 3 E − k 0 − + i ǫ 2 M N � 0 � i 0 × . ( � 3 � 3 � 0 2 / 3 k − 2 Q − 1 P ) 2 1 3 E − k 0 − + i ǫ 2 M N

  16. Triton charge form factor LO charge form-factor contribution from diagram (a) is � T F ( a ) � 0 ( p ) ⊗ A 0 ( p , k , Q ) ⊗ � 0 ( Q 2 ) = Z LO G G 0 ( k ) ψ � T +2 � G 0 ( p ) ⊗ A 0 ( p , Q ) + A 0 ( Q ) , and NLO contribution is � T F ( a ) � 0 ( p ) ⊗ A 1 ( p , k , Q ) ⊗ � 1 ( Q 2 ) = Z LO G G 0 ( k ) ψ T + 2 � 1 ( p ) ⊗ A 0 ( p , k , Q ) ⊗ � G G 0 ( k ) � T T +2 � 0 ( p ) ⊗ A 1 ( p , Q ) + 2 � G G 1 ( p ) ⊗ A 0 ( p , Q ) + A 1 ( Q ) , where � � p 2 � � G n ( p ) = D (0) B 0 − ,� p G n ( B 0 , p ) . 2 M N

  17. Triton charge form factor The vector term is � Λ � 1 1 � A n ( p , Q ) = − M N 1 1 � dqq 2 � � dx 2 π qQx q 2 − 2 3 qQx + 1 0 − 1 9 Q 2 p 0    p 2 + q 2 + 1 9 Q 2 + ( y − 2 3 ) qQx − M N B 0  � × Q 0 q 2 − 2 3 qQx + 1 9 Q 2 p � � 1 � qQx � � � q 2 Q 2 2 × D ( n ) B 0 − − + 2 − y ,� q , s 2 M N 12 M N − 2 / 3 M N and scalar term is � Λ � 1 1 � A n ( Q ) = M N 1 2 � dqq 2 � dx 4 π 2 qQx 3 0 − 1 0 � � 1 � qQx � q 2 Q 2 × D ( n ) B 0 − − + 2 − y ,� q . s 2 M N 12 M N M N

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend