three body approach to d scattering and bound state using
play

Three-body approach to d + scattering and bound state using - PowerPoint PPT Presentation

6 Li bound state and d + scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Three-body approach to d + scattering and bound state using realistic forces in a separable or non-separable representation


  1. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Three-body approach to d + α scattering and bound state using realistic forces in a separable or non-separable representation L. Hlophe NSCL/FRIB (Collaborators: Jin Lei, Ch. Elster, F. M. Nunes, A. Nogga) 1 / 29

  2. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Importance of ( d, p ) -reactions • Probing single-particle structure of nuclei • Extracting neutron-capture rates relevant for astrophysics 2 / 29

  3. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Importance of ( d, p ) -reactions • Probing single-particle structure of nuclei • Extracting neutron-capture rates relevant for astrophysics 130 Sn ( d, p ) 131 Sn 130 Sn ( n, γ ) 131 Sn − → Kozub et. al PRL 109 , 172501 (2012) 2 / 29

  4. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Three-Body Model for ( d, p ) Reactions The many-body problem • The deuteron ( d ) + target ( A ) system consists of A + 2 nucleons • Solutions not feasible for reactions involving heavy targets Isolating relevant degrees of freedom r r R R • Formulation of three-body problem by Faddeev • Momentum space formulation: Faddeev-AGS equations 3 / 29

  5. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook The Effective Three-Body Hamiltonian np-system • High precision NN potentials with χ 2 ≈ 1 , e.g., CD-Bonn [R. Machleidt, Phys. Rev. C63, 024001 (2001)] • NN potentials derived from chiral EFT nA system • Phenomenological fits of elastic scattering data to Woods-Saxon form, e.g. � 1 � d V 0 � + V so � l · σ v ( r ) = − � r − R 0 r dr � r − Rso 1+exp 1+exp a 0 aso • Microscopically computed, e.g., J. Rotureau, Phys. Rev. C 95, 024315 (2017) pA system • Similar to nA but with the Coulomb repulsion 4 / 29

  6. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Solving the Faddeev-AGS Equations Challenges 1. Non-trivial singularities in the kernel of multivariate integral equations 2. Treatment of the Coulomb interaction in momentum space Remedy: 1. Employing separable two-body interactions ( i.e. v ( r, r ′ ) = h 1 ( r ) λ 11 h 1 ( r ′ ) + h 1 ( r ) λ 12 h 2 ( r ′ ) + ... ) • Reduces the Faddeev-AGS equations into coupled integral equations in one variable 2. Formulation of Faddeev-AGS equations in the Coulomb basis (A. Mukhamedzhanov, et al. Phys.Rev. C86 , 034001 (2012).) – based on separable two-body potentials 5 / 29

  7. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Objectives 1. Construct separable expansions for: • High precision NN interactions • Effective nA and pA potentials 2. Benchmark for the three-body problem: Faddeev-AGS equations with (1) original three-body Hamiltonian and (2) its separable expansion: (a) 3-body bound state: • Compare 3-body binding energies and momentum distributions (b) Benchmark for d + A scattering: • Compare angular distributions for elastic scattering as well as transfer and deuteron breakup reactions 6 / 29

  8. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Separable expansion for 2-Body potentials: EST scheme • Start from potential V , solve for eigenstates of Hamiltonian H 0 + V at energies E i : H | ψ i � = E i | ψ i � rank • Separable expansion: v sep = � V | ψ i � λ ij � ψ i | V ij [ λ − 1 ] ij = � ψ i | V | ψ j � • Momentum space: | ψ i � = | p i � + G (+) ( E i ) V | ψ i � 0 • Physical solutions: p i = √ 2 µE i • To accelerate convergence of observables: include off-shell solutions with independent p i and E i • Notation: t -matrix t ( E i ) | p i � = V | ψ i � ≡ | h i � • Matrix elements given as v sep ( p ′ , p ) = � h i ( p ) λ ij h j ( p ) ij [Ernst et al. , Phys.Rev. C9, 1780 (1974)] 7 / 29

  9. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook The np t -matrix for J = S = 1 with CD-Bonn potential 0 (a) -0.1 l np = l’ np = 0 -0.2 -1 -0.3 CDBonn: p’= 0.3 fm 2 ] -0.4 -1 t l’ np l np (p’, p, E=-50) [fm CDBonn: p’= 0.8 fm 0.012 (b) -1 rank-6: p’= 0.3 fm l np = l’ np = 2 0.008 -1 rank-6: p’= 0.8 fm 0.004 0 -0.004 l np = 2, l’ np = 0 (c) 0.15 0.1 0.05 0 0 1 2 3 4 5 6 7 8 -1 ] p [fm • Support points: { E m , p m } = {− 60 , 0 . 4 } , {− 60 , 1 . 1 } , {− 60 , 2 . 5 } , {− 5 , 0 . 4 } , {− 5 , 1 . 1 } , {− 5 , 2 . 5 } • Shape of potential in p -space determines location of support momenta 8 / 29

  10. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Removing Pauli-Forbidden States • S 1 / 2 partial wave supports Pauli-forbidden state | φ � → ˜ • To project out the state | φ � : V − V = V + lim Γ →∞ | φ � Γ � φ | • Corresponding t -matrix: | φ �� φ | ˜ t ( E ) = t ( E ) − ( E − H 0 ) ( E − E b )[1 − ( E − E b ) / Γ] ( E − H 0 ) • Γ limit can be taken analytically t ( p ′ , p ; E ) = t ( p ′ , p ; E ) − ( E − E p ′ ) φ ( p ′ ) φ ( p ) ˜ E − E b ( E − E p ) 9 / 29

  11. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Removing Pauli-Forbidden States • S 1 / 2 partial wave supports Pauli-forbidden state | φ � → ˜ • To project out the state | φ � : V − V = V + lim Γ →∞ | φ � Γ � φ | • Corresponding t -matrix: | φ �� φ | ˜ t ( E ) = t ( E ) − ( E − H 0 ) ( E − E b )[1 − ( E − E b ) / Γ] ( E − H 0 ) • Γ limit can be taken analytically t ( p ′ , p ; E ) = t ( p ′ , p ; E ) − ( E − E p ′ ) φ ( p ′ ) φ ( p ) ˜ E − E b ( E − E p ) Separable Expansion • Separable expansion of V also supports bound state | φ � , must be removed • Convenient approach: expand ˜ V instead of V • Advantages: (1) straightforward implementation and (2) does not increase rank 9 / 29

  12. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Jacobi Coordinates: 3 different particles, 3 arrangement channels p n n p i q j q k p p n p k q i p j A A A ( i ) ( j ) ( k ) • Pair momenta: p i , p j , p k , spectator momenta q i , q j , q k • Notation: V i ≡ V np , V j ≡ V pA , V k ≡ V nA ⇒ 2-body potentials • Free Hamiltonian H 0 = p 2 i / 2 µ i + q 2 i / 2 M i • 3-Body Hamiltonian: H 3 b = H 0 + V i + V j + V k 10 / 29

  13. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Faddeev equations for a three-body bound state: • Three-body wavefunction | Ψ � = | ψ i � + | ψ j � + | ψ k � • Faddeev components have definition | ψ i � ≡ G 0 ( E 3 ) V i | Ψ � � � Coupled equations: | ψ i � = G 0 ( E 3 ) t i ( E 3 ) | ψ j � + | ψ k � • Two-body t -matrix: t i ( E 3 ) = V i + V i G 0 ( E 3 ) t ( E 3 ) • Explicit momentum space representation � 2 t α i α ′ � dp ′ i p ′ ( p i , p ′ ψ i ( p i q i α i ) = G 0 ( E q i , p i ) i ; E q i ) i i i α i ′ ψ j ( p ′ i q i α ′ i ) + ψ k ( p ′ i q i α ′ � � × i ) � Coupled integral equations in two variables: p i and q i 11 / 29

  14. 6 Li bound state and d + α scattering Motivation EST separable expansion Faddeev-AGS equations Summary and outlook Bound state Faddeev equations with separable potentials • Separable potential ⇒ t -matrix elements have form rank t α i α ′ mα i ( p i ) τ α i α ′ � ( p i , p ′ h i mn ( E q i ) h i i ( p ′ i i ; E q i ) = i i ) i nα ′ mn • Faddeev components become separable, e.g., if rank=1: ψ i ( p i q i α i ) = h i ( p i ) F ( i ) α i ( q i ) • Task is reduced to solving for functions F ( i ) ( q i ) which fulfill � 2 Z ( ij ) dq j ′ q ′ j ) F ( j ) � j ; E 3 b ) τ α j α ′ F ( i ) j ( q i , q ′ j ( q ′ j ( q ′ α i ( q i ) = j ) j α i α ′ α ′ α j α ′ j � 2 Z ( ik ) k ) F ( k ) � dq ′ k q ′ k ( q i , q ′ k ; E 3 b ) τ α k α ′ k ( q ′ k ( q ′ + k ) k α i α ′ α ′ α k α ′ k 12 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend