loosely bound three body nuclear systems in the j matrix
play

Loosely bound three-body nuclear systems in the J -matrix approach 1 - PowerPoint PPT Presentation

Microscopic Nuclear Structure Theory INT-04-3 program Loosely bound three-body nuclear systems in the J -matrix approach 1 2 Yuri Lurie and Andrey M. Shirokov 1 The College of Judea and Samaria, Israel 2 Moscow State University Yu. Lurie, A.


  1. Microscopic Nuclear Structure Theory INT-04-3 program Loosely bound three-body nuclear systems in the J -matrix approach 1 2 Yuri Lurie and Andrey M. Shirokov 1 The College of Judea and Samaria, Israel 2 Moscow State University

  2. Yu. Lurie, A. Shirokov , Annals of Physics 312 , pp. 284-318 (2004) � J -matrix formalism with hyperspherical oscillator basis � Application to 11 Li = 9 Li + n + n � Two-neutron halo in 6 He = α + n + n � Phase-equivalent transformation with continuous parameters and three-body cluster system

  3. � J -matrix formalism with hyperspherical oscillator basis Hyperharmonical coordinates ( A particles): − A 1 2 ∑ ρ = ξ hyperradiu s i − 3 A 3 independen t = i 1 ξ coordinate s i { } − Ω 3 A 4 angles � hypermomentum K ( ) ( ) Ψ = ∑ Φ ρ Ω R. I. Jibuti et. al, 1983; 1984 d Y γ γ γ K K K γ K , Democratic decay :

  4. A -body harmonic oscillator: 2 A ω r ω ( ) r h ( ) ( ) 2 2 κ γ = ρ Ω = ∑ − = ρ K R Y U m r R κ γ K K i i 2 2 = i 1 ( ) −  2 κ 2 ! ρ + κ ( ) ( ) 1 2 K 2 L   ρ = − ρ ρ 1 exp L R κ κ K ( )   2 Γ κ + + 3 2 L   − 3 A 6 = + K L 2 −  3 A 3  = + ω ≡ κ + eigenenerg y : E  N  N 2 K h κ K  2  ∞ ( ) ( ) ∑ ∑ Ψ = κ γ Ψ ρ Ω K R Y κ γ K K γ κ = K 0

  5. Kinetic energy : ( )( ) ′  − κ + κ + + κ = κ + 1 3 2 , 1 L ω  h 3 ′ ′ ′ ′ κ γ κ γ = δ δ κ + + κ = κ K T K 2 ,  L ′ ′ γ γ K , K , 2 2  ( ) ′ − κ κ + + κ = κ − 1 2 , 1 L  ω   h 2 =   Free solutions energy E q :  2  ( ) − 2  κ 2 ! + q ( ) 1 2 K 2 L   = S q q exp L q κ κ K ( )   2 Γ κ + + 3 2 L   ( ) ( ) ∞ ′ ′ S q S q 2 q κ K K 0 ( ) ′ = − C q V.P. ∫ d q κ K ( ) π 2 2 S q ′ − q q 0 K 0 ( ) ( ) ∞ ′ ′ ( ) ( ) S q S q 2 q κ ± 0 K K ′ = − C q ∫ d q ( ) κ K π 2 2 S q ′ − ± q q i 0 0 K 0 ( ) ( ( ) ( ) ω h + ) b 2 = − = energy E q : C q C i q κ κ K K 2

  6. Truncation of the potential : ~ ~ ′ ′ ′ ′ ′ κ γ κ γ = κ + > κ + > K V K 0 for 2 K N or 2 K N A ~  −  N K ~ ~ ~  κ > κ κ > κ κ ≡  , , ′ K K K 2   ⇒ variationa l approach : ~ ′ ′ κ + ≤ 2 K N ′ ′ ′ ′ ′ ′ ∑ κ γ + − κ γ κ γ λ = K T V E K K 0 λ A ′ ′ ′ κ γ K

  7. J - matrix method: Yu.F. Smirnov and A. M. Shirokov, Preprint ITF-88-47R (Kiev, 1988); A.M. Shirokov, Yu.F. Smirnov, and S.A. Zaytsev, Teoret. Mat. Fiz. 117 , 227 (1998) [Theor. Math. Phys. 117 , 1291 (1998)]  γ ( ) ( ) K ~ ~ ~ ′ ′ ′ ′ ∑ κ γ κ + γ κ + γ Ψ in in κ ≤ κ K 1 K 1 K , P ′ ′ K K K  ′ ′ γ K  ( internal region)    ( ) ( ) ( ) ( ) 1 γ  − +  K ( ) ~  in in δ δ − ≥ κ ≥ κ   C q C q S , E 0 γ K ′ ′ γ γ K , K , K κ κ γ κ γ Ψ in in = K K K K    2  ( ) ( )  γ K b ( ) ~ − δ δ < κ ≥ κ S C q , E 0  γ γ K , K , K γ κ K K in in  ( external region)    ~  ′ ′  κ γ λ λ κ γ K K ′ ( ) ( ) ~ ~ ~ K ′ ′ ′ ′ ′ ′ κ γ κ + γ = ∑ κ γ κ + γ K 1 K   K T 1 K P ′ ′ ′ K K K − E E  λ  λ

  8. � Application to 11 Li = 9 Li + n + n ( ) = ± E 2 n 0 . 247 0 . 080 MeV F. Ajzenberg-Selov, Nucl. Phys. A 490 , 1 (1988) ± 0 . 295 0 . 035 MeV W. Benenson, Nucl. Phys. A 588 , 11c (1995) 1 2 2 = ± r 3 . 10 0 . 17 fm I. Tanihata et al., Phys. Lett. B 206 , 592 (1988) ± 3 . 53 0 . 10 fm J.S. Al-Khalili et al., Phys. Rev. C 54 , 1843 (1996) ± 3 . 55 0 . 10 fm J.S. Al-Khalili and J.A. Tostevin, Phys. Rev. Lett. 76 , 3903 (1996)

  9. r r r + = l l L x y r r r + = s s S 1 2 = S 0 ( ) 2 x − ( ) R − = − = = Gaussian n n potential : U x V e V 31 MeV R 1 . 8 fm 0 0 2 2     y y − −     ( ) R R 9     − = − 1 − 2 n Li potential : U y V e V e 1 2 = = = = V 7 MeV R 2 . 4 fm V 1 MeV R 3 . 0 fm 1 1 2 2 L. Johansen, A.S. Jensen, and P.G. Hansen, Phys. Lett. B 244 , 356 (1990)

  10. 11 The ground state energy of Li Variational approach J -matrix method 0.8 0.00 ~ = N 18 ~ = ~ = -0.05 N 18 N 20 0.6 ~ = ~ = N 20 N 22 ~ = ~ = N 22 N 24 ~ = N 24 -0.10 0.4 E 0 , MeV E 0 , MeV -0.15 0.2 -0.20 0.0 -0.25 -0.2 -0.30 convergence limit convergence limit -0.4 -0.35 0 5 10 15 20 25 30 0 5 10 15 20 25 30 h ω , MeV h ω , MeV

  11. 11 Convergenc e of the Li ground state energy ~ and rms matter radius with N 0.4 variational h ω=6.5 MeV J-matrix 3.4 0.3 0.2 3.2 < r 2 > 1/2 , fm 0.1 E 0 , MeV 3.0 h ω=20 MeV 0.0 2.8 -0.1 2.6 -0.2 h ω=20 MeV 2.4 variational -0.3 J-matrix h ω=6.5 MeV -0.4 2.2 ~ 6 10 14 18 22 ~ 26 30 34 38 6 10 14 18 22 26 30 34 38 N N 1 / 2 − A 2 2 2 2 = − ρ r r 9 Li A

  12. ( ) 11 The Li two - neutron separation energy E 2 n 1 2 2 and rms matter radius r Approximation E (2 n ) < r 2 > 1/2 [fm] [MeV] ~ = ~ = ~ = ~ = N 38 N 40 N 38 N 40 Variational 0.326 0.327 3.176 3.189 1 F. Ajzenberg-Selov, Nucl. Phys. A 490 , 1 (1988) J -matrix 0.335 0.336 3.336 3.348 2 W. Benenson, M.V.Zhukov et al. 0.3 3.32 Nucl. Phys. A 588 , 11c (1995) PL B 265 (1991) 19 3 I. Tanihata et al., Phys. Lett. B 206 , 592 (1988) Experimental data 0.247±0.080 1 3.10±0.17 3 4 J.S. Al-Khalili et al., 0.295±0.035 2 3.53±0.10 4 Phys. Rev. C 54 , 1843 (1996) 5 J.S. Al-Khalili and J.A. Tostevin, 3.55±0.10 5 Phys. Rev. Lett. 76 , 3903 (1996)

  13. Reduced probabilit y and energy - weighted sum rule 11 of cluster dipole mode in Li ( ) E ( ) ( ) 1 d E 1 B ( ) d E 1 1 2 B = − ( ) ∫ S E E E d E = ∑ J E 1 J E1 f i f M f i d E S + d E 2 J 1 E1 0 i J f ∞ ( ) ( ) d E 1 B = − ∫ E E d E S E1 f i f ( ) d E 2 Ze r ( ) 0 ˆ µ = − E 1 y Y y M µ 1 2 2 2 A 9 e 2 Z h = ( ) π − 4 2 m A A 2 1.5 V V 100 V J J J B.V.Danilin et al. 39 d B (E1) / d E , fm 2 /MeV 80 experimental data 40 1.0 S E1 ( E ) , % 60 40 0.5 V V 20 V J J J 0.0 0 0 1 2 3 4 5 0 1 2 3 4 5 E , MeV E , MeV V ― variational approach; J ― J -matrix method

  14. d B ( E1 ) = Convergenc e of with N (energy E 0.5 MeV) d E ~ ~ = = ω = N 20 , N 21 , 6 . 5 MeV h g . s . f . s . 1.0 d B (E1) / d E , fm 2 /MeV 2 N h h 0.8 ρ ≈ ≈ 80 fm ω ω m m 0.6 ( ) = ω = N 500 , 6.5 MeV h 0.4 0.2 0.0 0 100 200 300 400 500 N

  15. � Two-neutron halo in 6 He = α + n + n ( ) = A.H. Wapstra et al., E 2 n 0 . 976 MeV At. Data Nucl. Data Tables 39 , 281 (1988) 1 2 2 = ± r 2 . 33 0 . 04 fm I. Tanihata et al., Phys. Lett. B 289 , 261 (1992) ± 2 . 48 0 . 03 fm I. Tanihata et al., RIKEN Preprint AF-NP-60 (1987) ± 2 . 57 0 . 10 fm L.V. Chulkov et al., Europhys. Lett. 8 , 245 (1989)

  16. Phenomenological effective potentials n – α potentials: • l -dependent Gaussian potential with repulsive s -wave core (SBB) B.V. Danilin et al., Yad. Fiz. 53 , 71 (1991) [Sov. J. Nucl. Phys. 53 , 45 (1991)] • Woods-Saxon potential (WS)   J. Bang and C. Gignoux, Nucl. Phys. A 313 , 119 (1979)  J.S. Al-Khalili et al., Phys. Rev. C 54 , 1843 (1996)    Pauli Projection • Majorana splitting potential (MS)  to the forbidden  V.I. Kukulin et al., Nucl. Phys. A 586 , 151 (1995)  0s state 1/2   • l -dependent Gaussian potential (GP)   Yu.A. Lurie and A.M. Shirokov,   Bull. Rus. Acad. Sci., Phys. Ser. 61 , 1665 (1997)

  17. n – n potentials: • Gaussian s -wave potential (Gs) G.E. Brown and A.D. Jackson, The Nucleon-Nucleon Interaction = = = V 30 . 93 MeV R 1 . 82 fm (singlet S 0 spin state) 0 = = = V 60 . 9 MeV R 1 . 65 fm (triplet S 1 spin state) 0 • Gaussian potential (G) B.V. Danilin et al., Phys. Lett. B 302 , 129 (1993) L.S. Ferreira et al., Phys. Lett. B 316 , 23 (1993) = = = V 31 . 00 MeV R 1 . 8 fm (singlet S 0 spin state) 0 = = = V 71 . 09 MeV R 1 . 4984 fm (triplet S 1 spin state) 0 • Minnesota potential (MN) /includes central, spin-orbit and tensor components/ T. Kaneko, M. LeMere, and L.C. Tang, Prep. TPI-MINN-91/32-T (1991)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend