calculation of three body density within gcm method
play

Calculation of Three-Body Density within GCM Method Long-Jun Wang - PowerPoint PPT Presentation

Calculation of Three-Body Density within GCM Method Long-Jun Wang Department of Physics and Astronomy, UNC-Chapel Hill Feb. 03, 2017 Outline Definition and Motivation 1 Calculation of Three-Body (3) and (3) 2 Numerical Check 3 L.-J.


  1. Calculation of Three-Body Density within GCM Method Long-Jun Wang Department of Physics and Astronomy, UNC-Chapel Hill Feb. 03, 2017

  2. Outline Definition and Motivation 1 Calculation of Three-Body ρ (3) and λ (3) 2 Numerical Check 3 L.-J. Wang (UNC) Three-Body Density Feb. 03, 2017 2 / 15

  3. Definition and Motivation Definition ( J -scheme and M -scheme) of ρ (3) � J � 0 � ��� ρ (3) J ≡ � J � � J 12 ˆ � J 45 ˆ � �� � c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) 0 + � 0 + ˆ ˆ ˆ ˆ (1) � � i f j 1 j 2 j 3 ˜ ˜ ˜ � j 4 j 5 j 6 � ρ (3) M ≡ c † c † c † 0 + � 0 + � � � � � ˆ τ 1 j 1 m 1 ˆ τ 2 j 2 m 2 ˆ τ 3 j 3 m 3 ˆ c τ 4 j 4 m 4 ˆ c τ 5 j 5 m 5 ˆ c τ 6 j 6 m 6 (2) i f From M -scheme to J -scheme ′ ρ (3) J = Coeff (123456 , J 12 , J 45 , J, Sig ) � ρ (3) M � (3) ( m 1 m 2 m 3 m 4 m 5 m 6 ) Important for NME of 0 νββ Menendez: PRL (2011); Engel: PRC (2014) From Wendt’s notes From PRL 107, 062501 L.-J. Wang (UNC) Three-Body Density Feb. 03, 2017 3 / 15

  4. Definition and Motivation Definition ( M -scheme) of λ (3) a · · · c † A a ··· k l ··· q = c † k c q · · · c l (4) ρ k r = � Ψ | A k r | Ψ � = ρ rk , (5) rs | Ψ � = ρ (2) ρ kl rs = � Ψ | A kl rs,kl , (6) rst | Ψ � = ρ (3) ρ klm rst = � Ψ | A klm rst,klm . (7) ρ k r ≡ λ k r , (8) ρ kl rs ≡ λ kl rs + A ( λ k r λ l s ) , (9) ρ klm rst ≡ λ klm rst + A ( λ k r λ l s λ m t + λ k r λ lm st ) . (10) The antisymmetrizer A generates all unique permutations of the indices of the product of tensors it is applied to. H. Hergert: In-Medium SRG Notes (2015) L.-J. Wang (UNC) Three-Body Density Feb. 03, 2017 4 / 15

  5. Calculation of Three-Body ρ (3) and λ (3) ρ (3) : from M - to J -scheme � J � 0 ��� � J � J 12 ˆ � J 45 ˆ �� c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) ˆ ˆ ˆ ˆ j 1 j 2 j 3 � ˜ ˜ ˜ j 4 j 5 j 6 � JM � JM ′ � J 12 ˆ � J 45 ˆ �� �� c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) � C 00 = ˆ ˆ ˆ ˆ JMJM ′ j 1 j 2 j 3 ˜ ˜ ˜ � j 4 j 5 j 6 MM ′ � J 12 M 12 ˆ � J 45 M 45 ˆ � � c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) � � � C 00 JMJM ′ C JM J 12 M 12 j 3 m 3 C JM ′ = ˆ ˆ ˆ ˆ J 45 M 45 j 6 m 6 j 1 j 2 j 3 m 3 � ˜ ˜ ˜ j 4 j 5 j 6 m 6 MM ′ M 12 m 3 M 45 m 6 � � � � � C 00 JMJM ′ C JM J 12 M 12 j 3 m 3 C JM ′ J 45 M 45 j 6 m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45 = j 4 m 4 j 5 m 5 MM ′ M 12 m 3 M 45 m 6 m 1 m 2 m 4 m 5 c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) × ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 m 4 ˆ j 5 m 5 ˆ ˜ ˜ ˜ j 6 m 6 1 � � � � � ( − ) J − M 2 J + 1 C JM J 12 M 12 j 3 m 3 C J − M J 45 M 45 j 6 m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45 √ = j 4 m 4 j 5 m 5 m 1 m 2 m 4 m 5 M M 12 m 3 M 45 m 6 c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) × ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 m 4 ˆ j 5 m 5 ˆ (11) ˜ ˜ ˜ j 6 m 6 L.-J. Wang (UNC) Three-Body Density Feb. 03, 2017 5 / 15

  6. Calculation of Three-Body ρ (3) and λ (3) ρ (3) : from M - to J -scheme In the signature basis 1 k ≡ 1 ˆ d † ˆ c † c † d k ≡ √ 2(ˆ c ˜ k + ˆ c k ) , √ 2(ˆ k − ˆ k ) , (12) ¯ ˜ 1 k ≡ 1 ˆ d † ˆ c † c † d ¯ k ≡ √ 2(ˆ c ˜ k − ˆ c k ) , √ 2(ˆ k + ˆ k ) . (13) ˜ � ˆ � ˆ d † d † � � e − iπ ˆ e iπ ˆ J x = ± i k k J x (14) ˆ ˆ d † d † ¯ ¯ k k Where +( − ) for m = 1 2 , − 3 2 , 5 2 · · · ( − 1 2 , 3 2 , − 5 2 · · · ) , i.e., m = even + 1 2 for positive signature. Rotated matrix elements in signature basis � ˆ d † τ 1 j 1 m 1 ˆ d † τ 2 j 2 m 2 ˆ d † τ 3 j 3 m 3 ˆ d τ 4 j 4 m 4 ˆ d τ 5 j 5 m 5 ˆ � ˜ � � � � φ f d τ 6 j 6 m 6 φ i (15) N. Hinohara: Notes (2015) L.-J. Wang (UNC) Three-Body Density Feb. 03, 2017 6 / 15

  7. Calculation of Three-Body ρ (3) and λ (3) ρ (3) : from M - to J -scheme ′ 1 � � ( − ) J − M √ = 2 J + 1 × ( m 1 m 2 m 3 m 4 m 5 m 6 ) ( M 12 M 45 M )  c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 )  J 12 M 12 j 3 m 3 C J − M J 45 M 45 j 6 m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45 C JM ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 m 4 ˆ j 5 m 5 ˆ j 4 m 4 j 5 m 5 ˜ ˜ ˜   j 6 m 6     c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) J 12 M 12 j 3 m 3 C J − M J 45 M 45 j 6 − m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45  + C JM  ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 m 4 ˆ j 5 m 5 ˆ    j 4 m 4 j 5 m 5 ˜ ˜ ˜  j 6 − m 6     c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 )  J 12 M 12 j 3 m 3 C J − M J 45 M 45 j 6 m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45  + C JM ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 m 4 ˆ j 5 − m 5 ˆ     j 4 m 4 j 5 − m 5 ˜ ˜ ˜  j 6 m 6      c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) J 12 M 12 j 3 m 3 C J − M J 45 M 45 j 6 − m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45 + C JM   ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 m 4 ˆ j 5 − m 5 ˆ   j 4 m 4 j 5 − m 5 ˜ ˜ ˜   j 6 − m 6     c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) J 12 M 12 j 3 m 3 C J − M J 45 M 45 j 6 m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45  + C JM  ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 − m 4 ˆ j 5 m 5 ˆ    j 4 − m 4 j 5 m 5 ˜ ˜ ˜  j 6 m 6     c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 )  J 45 M 45 j 6 − m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45  J 12 M 12 j 3 m 3 C J − M + C JM ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 − m 4 ˆ j 5 m 5 ˆ     j 4 − m 4 j 5 m 5 ˜ ˜ ˜   j 6 − m 6     c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) J 45 M 45 j 6 m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45 J 12 M 12 j 3 m 3 C J − M  + C JM  ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 − m 4 ˆ j 5 − m 5 ˆ (16) j 4 − m 4 j 5 − m 5 ˜ ˜ ˜ j 6 m 6 c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) J 12 M 12 j 3 m 3 C J − M J 45 M 45 j 6 − m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45 + C JM j 4 − m 4 j 5 − m 5 ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 m 3 � ˆ j 4 − m 4 ˆ j 5 − m 5 ˆ     ˜ ˜ ˜ j 6 − m 6      c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 )  J 12 M 12 j 3 − m 3 C J − M J 45 M 45 j 6 m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45 + C JM ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 − m 3 � ˆ j 4 m 4 ˆ j 5 m 5 ˆ     j 4 m 4 j 5 m 5 ˜ ˜ ˜   j 6 m 6     c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) J 12 M 12 j 3 − m 3 C J − M J 45 M 45 j 6 − m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45  + C JM  ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 − m 3 � ˆ j 4 m 4 ˆ j 5 m 5 ˆ    j 4 m 4 j 5 m 5 ˜ ˜ ˜  j 6 − m 6     c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 )  J 12 M 12 j 3 − m 3 C J − M J 45 M 45 j 6 m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45  + C JM ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 − m 3 � ˆ j 4 m 4 ˆ j 5 − m 5 ˆ     j 4 m 4 j 5 − m 5 ˜ ˜ ˜  j 6 m 6      c ( τ 1 ) † c ( τ 2 ) † c ( τ 3 ) † c ( τ 4 ) c ( τ 5 ) c ( τ 6 ) J 12 M 12 j 3 − m 3 C J − M J 45 M 45 j 6 − m 6 C J 12 M 12 j 1 m 1 j 2 m 2 C J 45 M 45 + C JM  j 4 m 4 j 5 − m 5 ˆ j 1 m 1 ˆ j 2 m 2 ˆ j 3 − m 3 � ˆ j 4 m 4 ˆ j 5 − m 5 ˆ    ˜ ˜ ˜   j 6 − m 6     + · · · · · ·         + · · · · · ·   L.-J. Wang (UNC) Three-Body Density Feb. 03, 2017 7 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend