unification without doublet triplet splitting susy
play

Unification without Doublet-Triplet Splitting SUSY Exotics at the - PowerPoint PPT Presentation

J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jrgen Reuter Carleton University, Ottawa University of Freiburg W.


  1. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Unification without Doublet-Triplet Splitting — SUSY Exotics at the LHC Jürgen Reuter Carleton University, Ottawa University of Freiburg − → W. Kilian, J. Reuter, PLB B642 (2006), 81, and work in progress (with F . Deppisch) MSU, East Lansing, March 20, 2007

  2. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 The Standard Model (SM) – Theorist’s View Renormalizable Quantum Field Theory (only with Higgs!) based on SU (3) c × SU (2) L × U (1) Y non-simple gauge group M H [GeV] Reducible representation: 750 500 q ( 3 , 2 ) 1 3 ⊕ ℓ ( 1 , 2 ) − 1 ⊕ u c ( 3 , 1 ) − 4 d c ( 3 , 1 ) 2 3 ⊕ 250 3 ⊕ e c ( 1 , 1 ) ⊕ H ( 1 , 2 ) 1 Λ[GeV] 10 3 10 6 10 9 10 12 10 15 10 18 Incompleteness Theoretical Dissatisfaction ◮ Electroweak Symmetry Breaking ◮ 28 free parameters ◮ Higgs boson ◮ “strange” fractional ◮ Origin of neutrino masses U (1) quantum numbers ◮ Dark Matter: m DM ∼ 100 GeV ◮ Hierarchy problem

  3. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Conventional and MSSM Unification 1971–74 Supersymmetry: consistent extrapolation to high scales Running of 1/ α , MSSM, i.e. with 1 × [H u ⊕ H d ] ⇒ unification quantitatively testable 60 1/ α 1 (assuming a given spectrum) 50 1/ α 2 1/ α 3 ⇒ two Higgs doublets H u , H d 40 30 ⇒ superpartners for all SM particles, 20 presumably in the TeV range 10 0 Bottom-Up Approach: just MSSM 10 3 10 6 10 9 10 12 10 15 10 18 µ [GeV] 1973 Unification of leptons and quarks by Pati/Salam: G SM ⊂ G PS = SU (4) c × SU (2) L × SU (2) R × Z 2 Each matter family in irreducible rep. (incl. ν R , 2nd Higgs doublet): 1974 Unification of gauge couplings by Georgi/Glashow: G SM ⊂ G GG = SU (5) Matter representation for SU (5) is reducible (classically) Simple-group unification: partial unification of leptons/quarks

  4. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 The prime example: (SUSY) SU (5) SU (5) − M X SU (3) c × SU (2) w × U (1) Y − → M Z SU (3) c × U (1) em → SU (5) has 5 2 − 1 = 24 generators: 24 → ( 8 , 1 ) 0 ⊕ ( 1 , 3 ) 0 ⊕ ( 1 , 1 ) 0 ⊕ ( 3 , 2 ) 5 ⊕ ( 3 , 2 ) − 5 3 3 � �� � � �� � � �� � � �� � � �� � G β W B X, ¯ ¯ X,Y Y α √ 2 G a λ a   ( ¯ X, ¯ GM gA a λ a Y ) g g 2 2 = √  − √ B diag( − 2 , − 2 , − 2 , 3 , 3)  √ 2 W a σ 2 2 15 ( X, Y ) T 2 SU (5) breaking: Higgs Σ in adjoint 24 rep. 5 � Σ � = w × diag(1 , 1 , 1 , − 3 2 , − 3 2 ) M X = M Y = √ g w 2 2 other breaking mechanisms possible (e.g. orbifold)

  5. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Quantum numbers q ◮ Hypercharge: λ 12 3 Y = 1 Y = 3 diag( − 2 , − 2 , 3 , 3 , 3) 2 5 2 Quantized hypercharges are fixed by non-Abelian generator ◮ Weak Isospin: T 1 , 2 , 3 = λ 9 , 10 , 11 / 2 Q = T 3 + Y/ 2 = diag( − 1 ◮ Electric Charge: 3 , − 1 3 , − 1 3 , 1 , 0) ◮ Prediction for the weak mixing angle (with RGE running): α − 1 ( M Z ) = 128 . 91(2) , α s ( M Z ) = 0 . 1176(20) , s 2 w ( M Z ) = 0 . 2312(3) non-SUSY: s 2 α ( M Z ) 23 109 w ( M Z ) = 134 + ≈ 0 . 207 α s ( M Z ) 201

  6. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Quantum numbers q ◮ Hypercharge: λ 12 3 Y = 1 Y = 3 diag( − 2 , − 2 , 3 , 3 , 3) 2 5 2 Quantized hypercharges are fixed by non-Abelian generator ◮ Weak Isospin: T 1 , 2 , 3 = λ 9 , 10 , 11 / 2 Q = T 3 + Y/ 2 = diag( − 1 ◮ Electric Charge: 3 , − 1 3 , − 1 3 , 1 , 0) ◮ Prediction for the weak mixing angle (with RGE running): α − 1 ( M Z ) = 128 . 91(2) , α s ( M Z ) = 0 . 1176(20) , s 2 w ( M Z ) = 0 . 2312(3) non-SUSY: s 2 α ( M Z ) 23 109 w ( M Z ) = 134 + ≈ 0 . 207 α s ( M Z ) 201 SUSY: s 2 α ( M Z ) 1 7 w ( M Z ) = 5 + ≈ 0 . 231 α s ( M Z ) 15 New Gauge Bosons Two colored EW doublets: ( X, Y ) , ( ¯ X, ¯ Y ) with charges ± 4 3 , ± 1 3

  7. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Fermions (Matter Superfields) The only possible way to group together the matter:     d c u c − u c 0 − u − d − u c u c  d c   0 − u − d      1    u c − u c  d c √ 5 = : 10 = : 0 − u − d     2     − e c ℓ u u u 0     e c − ν ℓ d d d 0 5 = ( 3 , 1 ) 2 3 ⊕ ( 1 , 2 ) − 1 10 = ( 3 , 2 ) 1 3 ⊕ ( 3 , 1 ) − 4 3 ⊕ ( 1 , 1 ) 2 Remarks ◮ 2 = = 2 , ( 5 ⊗ 5 ) a = 10 , ( 3 ⊗ 3 ) a = 3 , ( ⊗ ) a = ◮ Quarks and leptons in the same multiplet ◮ Fractional charges from tracelessness condition (color!) ◮ 5 and 10 have equal and opposite anomalies ◮ ν c must be SU (5) singlet

  8. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 The Doublet-Triplet Splitting Problem MSSM Higgses included in 5 H ⊕ 5 H � D � D c � � 5 H = ( 3 , 1 ) − 2 3 ⊕ ( 1 , 2 ) 1 : 5 H = ( 3 , 1 ) 2 3 ⊕ ( 1 , 2 ) − 1 : H u ǫH d D, D c colored triplet Higgses with charges ± 1 3 (EW singlet) colored Dirac fermion ˜ D with charge − 1 / 3 (EW singlet) Unification requires omitting colored part of SU(5) Higgs 5 H , ¯ 5 H ( m H ∼ 100 GeV , m D ∼ 10 16 GeV) ◮ Doublet-triplet splitting problem Welcome, since SU (5) -symmetric Higgs interactions would read 5 H = ℓH d e c + qǫH d d c + qǫℓD c + d c u c D c ¯ 5 10 ¯ 10 5 H 10 = ℓH d e c + qǫH u u c + Du c e c + Dqǫq Generating SM masses ⇒ leptoquark and diquark coupl. for D, D c ⇒ triggers rapid proton decay

  9. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Interactions    e e ν    Leptoquark couplings   X Y Y  (and SUSY vertices)  u  d d        u u    Diquark couplings   X Y   (and SUSY vertices) u  d     e + u Y Vector bosons induce e.g. u decay p → e + π 0 d d

  10. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Doublet-Triplet Splitting Possible scenarios: 1. Colored singlets are heavy (GUT scale) = doublet-triplet splitting ◮ enables exact unification near 10 16 GeV and excludes rapid proton decay ◮ Proton decay may still be too fast (depending on the superpotential) ◮ Doublet-triplet splitting is not trivially available 2. Colored singlets are light (TeV scale) ◮ Simple unification no longer happens near 10 16 GeV, nor elsewhere ,D c Running of 1/ α , MSSM with 1 × [(H u ,D) ⊕ (H d )] 60 1/ α 1 50 1/ α 2 1/ α 3 40 30 20 10 0 10 3 10 6 10 9 10 12 10 15 10 18 µ [GeV] ◮ Proton-decay coupl. must be excluded: consistent with GUT symmetry?

  11. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Further MSSM Issues Even if doublet-triplet splitting is accepted, the MSSM Higgs sector appears ad-hoc: ◮ µ problem µ -term µH u H d is supersymmetric, in principle not related to soft-SUSY-breaking Lagrangian: Why is it O (100 GeV ) , not O (10 16 GeV ) ? ⇒ Possible extension as a solution: singlet Higgs S with superpotential λSH u H d → λ � S � H u H d = µH u H d (does not change the unification prediction) ⇒ NMSSM, where � S � should be somehow related to soft-breaking Lagrangian How?

  12. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Radiative Symmetry Breaking MSSM with cutoff Λ ∼ 10 16 GeV: major contribution to Higgs potential comes through Coleman-Weinberg mechanism: = + + ⇒ Large top Yukawa coupl. drives effective H u mass squared negative: m 2 λ 2 (Λ 2 · 0) + m 2 t ,soft m 2 eff = ( m 2 H ,soft + µ 2 ) + 16 π 2 ln t ,soft Λ 2 Such a mechanism may also be responsible for a S vev in the NMSSM ◮ requires the existence of a vectorlike pair of chiral superfields ◮ for instance, D and D c (colored) with coupling SDD c ◮ . . . as required by SU (5) , if SH u H d is present . . . . . . would simultaneously give a Dirac mass to D . ◮ Without tree-level quartic coupling, the CW mechanism implies � S � ∼ 4 πm soft , so � S � ≫ � H � .

  13. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Further MSSM Issues Even if doublet-triplet splitting is accepted, the MSSM Higgs sector appears ad-hoc: ◮ Why is there only one family of Higgs matter? Neither SU (5) , nor G PS (nor SO (10) ) does unify Higgs fields with SM matter. . .

  14. J. Reuter Unification without Doublet-Triplet Splitting MSU, East Lansing, 20.3.2007 Higgs-Matter Unification 1976: Trinification: Treat all interactions equally G Tri = SU (3) c × SU (3) L × SU (3) R × Z 3 Multiplets:     H + H 0 ν L u L u d L (1 , 3 , ¯  = Q L (3 , ¯ H 0 3) = H − e L d L 3 , 1)    u d e c ν c S D L R R � � Q R (¯ u c d c D c 3 , 1 , 3) = R R R 1976: E 6 as superset of trinification (and SO (10) ) with additional gauge bosons X (3 , 3 , 3) and ¯ X (¯ 3 , ¯ 3 , ¯ 3) ⇒ 78 ⇒ irreducible multiplet ( 27 ) unifies all matter, Higgs, colored and neutral singlets (within each family) ⇒ contains NMSSM, allows for radiative symmetry breaking in both singlet and doublet sectors

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend