ads collapse and relaxation in closed quantum systems
play

AdS COLLAPSE AND RELAXATION IN CLOSED QUANTUM SYSTEMS Javier Mas - PowerPoint PPT Presentation

AdS COLLAPSE AND RELAXATION IN CLOSED QUANTUM SYSTEMS Javier Mas Universidad de Santiago de Compostela Javier Abajo-Arrastia, Emilia da Silva, Esperanza Lpez, J.M. & Alexandre Serantes. arXiv:1403.2632 and 1412.6002 MOTIVATION


  1. AdS COLLAPSE AND RELAXATION IN CLOSED QUANTUM SYSTEMS Javier Mas Universidad de Santiago de Compostela Javier Abajo-Arrastia, Emilia da Silva, Esperanza López, J.M. & Alexandre Serantes. arXiv:1403.2632 and 1412.6002

  2. MOTIVATION Classical Dynamics : one expects non-linear dynamics should lead on its own to thermalisation: - stochasticity threshold

  3. MOTIVATION ¿How do closed quantum systems thermalise? - no dynamical chaos since time evolution is linear - discrete spectrum - how conserved quantities constraint relaxation h ˆ Fundamental questions: for O i ( t ) i - is there a stationary state being reached? - can it be described by a Gibbs ensemble? - are initial conditions erased? Addressable with : - recent advances in ultracold atom systems - exact results in integrable chains and CFT - AdS/CFT

  4. MOTIVATION time dependent AdS/CFT Poincaré patch Heavy Ion Collisions Global AdS A S d − 1

  5. PLAN - Relaxation in Closed Quantum Systems - Dynamics of Entanglement Entropy - Holographic Revivals

  6. Relaxation in Quantum Closed Systems When addition conserved charges prethermalization, described by Generalized Gibbs Ensemble 2006 no erasure of initial condition f ( p x )

  7. Relaxation in Quantum Closed Systems 2002 t rev t col H = U ˆ 2 ˆ n (ˆ n − 1) n e –¯ n (1 − cos Ut ) e i ¯ n sin Ut √ ψ ( t ) = ¯ t rev = 2 π 1 t col = U nU ¯

  8. Relaxation in Quantum Closed Systems emergent Quantum systems described by a sum maximum speed of local Hamiltonians v L R 1972 2012 what is the speed ? v L R 2014

  9. Relaxation in Quantum Closed Systems XY model 2010 t rev = p L v L R 2009 R.W. Robinett, “ Quantum wave packet revivals”, Physics Reports 392 (2004) 1-119

  10. Quantum Field Theory - are there revivals? - at strong coupling ? at large c? - what observables are nice to monitor h ˆ A i ( t ) = h ψ ( t ) | ˆ i) local: A | ψ ( t ) i ii) non-local: ✓ ◆ P exp i Z - Wilson line W C = Tr A ~ C - entanglement entropy

  11. Quantum Field Theory S A = − Tr ˆ ρ A = Tr B ˆ ˆ ρ A log ˆ ρ ρ A C. Holzey, F. Larsen, F. Wilczek 1994 Exact results for CFT in 1+1 dimensions P. Calabrese & J. Cardy 2003 ✓ l B A B ◆ S A = c 3 log T = 0 l ✏ | ψ i = | 0 i 3 log l c 8 l ⌧ β − → ✓ � > ✏ > ◆ A = c ⇡✏ sinh ⇡ l < T = 1 S β 3 log ✓ � β 6 = 0 − → � ◆ c + ⇡ c l � β > 3 log 3 � l + ... > − → : 2 ⇡✏

  12. ENTANGLEMENT ENTROPY AFTER A QUENCH At t = 0 the Hamiltonian changes abruptly, leaving an excited state. Watch it evolve. µ H ( µ 0 ) , | ψ (0) i H (0) CF T , | ψ ( t ) i t π c P. Calabrese & J. Cardy 2005  t t < l/ 2 ,  6 τ 0   for l, t � τ 0 ⇠ 1 /m S l ( t ) ∼ π c  l l/ 2 < t   12 τ 0 reaches an extensive EE with a T ∼ 1 / 4 τ 0

  13. ENTANGLEMENT ENTROPY AFTER A QUENCH kinematical argument: quench leaves an excited sea of quasiparticle pairs t = 0 entangled pairs fly apart at the speed of light 0 ≤ t ≤ l/ 2 B A B S l ( t ) ∼ t B A B S l ( t ) ∼ l

  14. HOLOGRAPHIC ENTANGLEMENT ENTROPY entanglement entropy minimal surface homologous to A r γ A S. Ryu & T. Takayanagi 2006 S ( θ ) = Area( γ A ) 4 G d +1 A B B quench in CFT d shell collapse in AdS d+1 s analytic case: AdS d+2 -Vaidya: collapse of radiation shell d ✓ r 2 − m ( v ) ◆ ds 2 = − dv 2 + 2 drdv + r 2 X dx 2 i r d − 1 i =1 T vv = dm 0 ( v ) 2 r d m ( v ) t v r

  15. HOLOGRAPHIC ENTANGLEMENT ENTROPY J. Abajo-Arrastia, J. Aparicio & E. López 2010 T. Albash & C. V. Johnson 2011 S l ( t ) S l ( t ) ∼ t S l ( t ) ∼ l t = l/ 2 are we seeing a light-cone-like effect for entangled quasiparticles? γ A A B B is the radial position of the shell dual to the entangled pair separation?

  16. ENTANGLEMENT EVOLUTION IN COMPACT SPACE Confirmed for: CFT = 1+1 Free Fermion T. Takayanagi & T. Ugajin 2010 S l ( t ) t = π R CFT =minimal models John Cardy 2014 A θ ∈ (0 , 2 π )

  17. ENTANGLEMENT EVOLUTION IN GLOBAL AdS Confirmed for: AdS- Vaydia leads to a direct black hole formation CFT = 1+1 Free Fermion T. Takayanagi & T. Ugajin 2010 S l ( t ) π γ A x 2 1 − dt 2 + dx 2 + sin 2 x d Ω 2 ds 2 = � � cos 2 x d − 1 A S d − 1

  18. ENTANGLEMENT EVOLUTION IN GLOBAL AdS Collapse of a massless scalar field in AdS d+1 ✓ 1 2 κ 2 R + d ( d − 1) − 1 ◆ Z d d +1 x √ g 2 ∂ µ φ∂ µ φ S = π l 2 γ A x 2 homogeneous ansatz (Bizon & Rostworowski 2011) dx 2 1 ✓ ◆ ds 2 = − A ( x, t ) e − 2 δ ( x,t ) dt 2 + A ( x, t ) + sin 2 x d Ω 2 cos 2 x d 0 ≤ x ≤ π / 2 Equations of motion + boundary conditions 2 − x ) d φ ∞ + ... φ ( x, t ) ( π ∼ 2 − x ) d M + ... A ( x, t ) 1 − ( π ∼ 2 − x ) 2 d φ ∞ + ... δ ( x, t ) ( π ∼ A S d − 1 apparent horizon forms whenever A ( x h , t h ) = 0

  19. ENTANGLEMENT EVOLUTION IN GLOBAL AdS φ (0 , x ) select a class of initial conditions π ✏ γ A x 2 σ π / 2 x 0 − 4 tan 2 ( π 2 − x ) � (0 , x ) = ✏ 12 ✓ ◆ cos d x ⇡ exp � 2 is related to the quench energy ✏ σ is related to the quenching time δ t σ δ t A M ( ✏ , � ) = ✏ 2 f ( � ) S d − 1

  20. AdS 4 : COLLAPSES | φ | ✏ = 100 σ = 1 / 16 π / 2 x dx 2 1 ✓ ◆ ds 2 = − A ( x, t ) e − 2 δ ( x,t ) dt 2 + A ( x, t ) + sin 2 x d Ω 2 cos 2 x d 0 ≤ x ≤ π / 2

  21. AdS 4 : COLLAPSES | φ | σ = 1 / 16 ✏ = 42 . 4 π / 2 x Amin 1.0 weak turbulence in action 0.8 0.6 the periodicity is ! ≥ π 0.4 0.2 t = proper time at boundary 1 2 3 4 6 5

  22. φ (0 , x ) AdS 4 : COLLAPSES σ = 1 ✏ ✏ ∼ M 16 σ π / 2 Large BH x 0 M = 0 . 73 300 Small BH 0 bounces M = 0 . 014 M. Choptuik 1992 42 . 6 1 bounce P. Bizón & A. Rostworowski 2011 33 . 4 2 bounces 27 . 5 3 bounces x H

  23. AdS 4 : ENTANGLEMENT ENTROPY Pre-collapse θ = 0 . 3 , 0 . 4 , ..., 1 . 4 θ J. Abajo-Arrastia, E da Silva, E. López, J.M. & A. Serantes.

  24. AdS 4 : ENTANGLEMENT ENTROPY Pre-collapse θ = 0 . 3 , 0 . 4 , ..., 1 . 4 1 . 4 1 . 2 θ . . . 0 . 3 J. Abajo-Arrastia, E da Silva, E. López, J.M. & A. Serantes.

  25. AdS 4 : ENTANGLEMENT ENTROPY Pre-collapse θ = 0 . 3 , 0 . 4 , ..., 1 . 4 1 . 4 1 . 2 θ . . . J. Abajo-Arrastia, E da Silva, E. López, J.M. & A. Serantes.

  26. AdS 4 : ENTANGLEMENT ENTROPY Pre-collapse θ = 0 . 3 , 0 . 4 , ..., 1 . 4 1 . 4 1 . 2 θ . . . J. Abajo-Arrastia, E da Silva, E. López, J.M. & A. Serantes.

  27. AdS 4 : ENTANGLEMENT ENTROPY Pre-collapse θ = 0 . 3 , 0 . 4 , ..., 1 . 4 1 . 4 1 . 2 θ . . . J. Abajo-Arrastia, E da Silva, E. López, J.M. & A. Serantes.

  28. AdS 4 : ENTANGLEMENT ENTROPY Pre-collapse θ = 0 . 3 , 0 . 4 , ..., 1 . 4 1 . 4 1 . 2 θ . . . 0 . 3 J. Abajo-Arrastia, E da Silva, E. López, J.M. & A. Serantes.

  29. AdS 4 : ENTANGLEMENT ENTROPY Pre-collapse θ = 0 . 3 , 0 . 4 , ..., 1 . 4 θ 1 . 4 1 . 2 θ . . . 0 . 3 0 . 3 t = θ = l/ 2 Javier Abajo-Arrastia, Emilia da Silva, Esperanza López, J.M. & Alexandre Serantes. arXiv:1403.2632

  30. AdS 4 : SPECTRAL ANALYSIS

  31. AdS 4 : ABSORTIVE PHASE

  32. AdS 4 : ABSORTIVE PHASE A 1 horizon formation 1 bounce 2 bounces Schwarzchild BH 0.5 x 0 0 0.02 0.04 0.06

  33. AdS 4 : ABSORTIVE PHASE Post-collapse: two regimes, elastic and absorptive 1 . 4 1 . 2 . . . 0 . 3 T ∼ 1 / ✏ 2

  34. AdS 4 : CHANGE INITIAL CONDITIONS ✏ Bouncing phase: period changes with mass: two time scales Bose t rev t rev n = ¯ t col t col t col t rev collapse time: t col = θ revival time: t rev = f ( M )

  35. AdS 4 : CHANGE INITIAL CONDITIONS σ - no collapse occurs for 0 . 3 ≤ σ ≤ 16 Buchel, Liebling & Lehner 1304.4166 Ρ � 0,x � 2.5 Σ� 0.05 Σ� 0.6 2.0 Σ� 20 1.5 1.0 0.5 x 1.0 0.5 1.5 - new period appears π / 3

  36. AdS 3 ~ 1+1 CFT ✏ σ = 1 4 chaotic t r Collapse min ( A ) 1.0 Unstable (Caotic) M = 1 0.9 0.8 Bounce Stable (Integrable) 0.7 J. Jalmuzna & P. Bizón 2013 0.6 t 50 100 150 200 x H

  37. AdS 3 ~ 1+1 CFT L Θ θ = π / 2 0.5 0.4 0.3 0.2 0.1 t 2 4 6 8 10 L Θ t r 40 0.8 110 M >1 30 0.6 70 20 0.4 30 1 1.0025 1.0046 0.2 10 t 10 20 30 40 M 0.0 0.2 0.4 0.6 0.8 1.0

  38. AdS 3 ~ 1+1 CFT Z π / 2 Autocorrelation superperiod C ( t ) = 1 tan( x ) | ρ ( t, x ) ρ (0 , x ) | 1 / 2 dx M 0 M = 0.5 π / 2 it = 3 , it = 657 1 1 / 2 ⅆ x tan ( x )| ρ ( t,x ) ρ ( 0,x ) ρ ( t,x ) � M 0 0.7 1.0 0.6 0.8 0.5 0.4 0.6 0.3 0.4 0.2 0.1 0.2 x 0.5 1.0 1.5 it 200 400 600 800 1000 1200

  39. PLANAR AdS 5 with a Hard Wall Craps, Lindgren, Taliotis, Vanhoof & Zhang 1406.1454 r h < r HW r = ∞

  40. PLANAR AdS 5 with a Hard Wall Craps, Lindgren, Taliotis, Vanhoof & Zhang 1406.1454 r = ∞ r HW < r h

  41. PLANAR AdS 5 with a Hard Wall da SIlva, J.M., A. Serantes, E. López 1508.xxxx r = ∞ r HW < r h

  42. σ = 0 . 5 da SIlva, J.M., A. Serantes, E. López 1508.xxxx t collapse H M L σ = 0 . 5 40 σ = 0 . 4 30 σ = 0 . 2 20 σ = 0 . 3 σ = 0 . 1 10 M 1.10 1.20 1.05 1.15 1.25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend