li cheng tsai
play

Li-Cheng Tsai Rutgers University Stochastic Analysis, Random Fields - PowerPoint PPT Presentation

Lower-tail large deviations of the KPZ equation Li-Cheng Tsai Rutgers University Stochastic Analysis, Random Fields and Integrable Probability The 12th Mathematical Society of Japan, Seasonal Institute Li-Cheng Tsai Lower-tail LDs of KPZ The


  1. Lower-tail large deviations of the KPZ equation Li-Cheng Tsai Rutgers University Stochastic Analysis, Random Fields and Integrable Probability The 12th Mathematical Society of Japan, Seasonal Institute Li-Cheng Tsai Lower-tail LDs of KPZ

  2. The Kardar–Parisi–Zhang (KPZ) equation Random growth with smoothing effect and slope dependence 2 ( ∂ x h ) 2 + ξ ∂ t h = 1 2 ∂ xx h + 1 ξ = ξ ( t, x ) = spacetime white noise Li-Cheng Tsai Lower-tail LDs of KPZ

  3. The Kardar–Parisi–Zhang (KPZ) equation • Define h ( t, x ) := log Z ( t, x ) . Li-Cheng Tsai Lower-tail LDs of KPZ

  4. The Kardar–Parisi–Zhang (KPZ) equation • Define h ( t, x ) := log Z ( t, x ) . • This talk: Z (0 , x ) = δ ( x ) . For small t ≪ 1 , 2 πt e − x 2 1 2 t . Z ( t, x ) ≈ √ Li-Cheng Tsai Lower-tail LDs of KPZ

  5. t → ∞ behaviors: centering, fluctuations, and tails Li-Cheng Tsai Lower-tail LDs of KPZ

  6. t → ∞ behaviors: centering, fluctuations, and tails [Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10] For Z (0 , x ) = δ ( x ) , as t → ∞ , t − 1 3 ( h (2 t, 0) + t 12 ) = ⇒ GUE Tracy Widom Li-Cheng Tsai Lower-tail LDs of KPZ

  7. t → ∞ behaviors: centering, fluctuations, and tails 2 Φ ± ( z ) = rate functions Speed t v.s. t 2 e h (2 t, 0) = Z (2 t, 0) � 2 t � ξ ( s,b (2 t − s ))d s � = E BB e 0 Li-Cheng Tsai Lower-tail LDs of KPZ

  8. Perturbative versus non-perturbative [Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10] � � t �� � � 12 + tz Z (2 t, 0) exp − e = det I − K t,z E L 2 ( R + ) ( − 1) n � det( I − K t,z ) := 1 + � ∞ + det( K t,z ( x i , x j )) n i,j =1 d n x R n n =1 n ! � R + (1 + exp( − t 1 / 3 λ − tz )) − 1 Ai( x + r )Ai( x ′ + r )d r K t,z ( x, x ′ ) := Li-Cheng Tsai Lower-tail LDs of KPZ

  9. Perturbative versus non-perturbative [Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10] � � 12 + tz + h (2 t, 0) �� t � � exp − e = det I − K t,z E L 2 ( R + ) ( − 1) n � det( I − K t,z ) := 1 + � ∞ + det( K t,z ( x i , x j )) n i,j =1 d n x R n n =1 n ! Li-Cheng Tsai Lower-tail LDs of KPZ

  10. Perturbative versus non-perturbative [Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10] � � � � h (2 t, 0) + t 12 < tz ≈ det I − K t,z P L 2 ( R + ) ( − 1) n det( I − K t,z ) := 1 + � ∞ � + det( K t,z ( x i , x j )) n i,j =1 d n x n =1 R n n ! Li-Cheng Tsai Lower-tail LDs of KPZ

  11. Perturbative versus non-perturbative [Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10] � � � � h (2 t, 0) + t 12 < tz ≈ det I − K t,z P L 2 ( R + ) det( I − K t,z ) := 1 + � ∞ ( − 1) n � + det( K t,z ( x i , x j )) n i,j =1 d n x R n n =1 n ! • Upper tail z > 0 as t → ∞ , we have K t,z → 0 - Perturbative: det( I − K t,z ) = 1 − Tr( K t,z ) + . . . 3 - [Le Doussal Majumdar Schehr 16] predicted Φ + ( z ) = 4 3 z 2 - Proof in progress Li-Cheng Tsai Lower-tail LDs of KPZ

  12. Perturbative versus non-perturbative [Amir Corwin Quastel 10], [Calabrese Le Doussal Rosso 10], [Dotsenko 10], [Sasamoto Spohn 10] � � � � h (2 t, 0) + t 12 < tz ≈ det I − K t,z P L 2 ( R + ) det( I − K t,z ) := 1 + � ∞ ( − 1) n � + det( K t,z ( x i , x j )) n i,j =1 d n x R n n =1 n ! • Upper tail z > 0 as t → ∞ , we have K t,z → 0 - Perturbative: det( I − K t,z ) = 1 − Tr( K t,z ) + . . . 3 - [Le Doussal Majumdar Schehr 16] predicted Φ + ( z ) = 4 3 z 2 - Proof in progress • Lower tail z < 0 , K t,z �→ I as t → ∞ - Non -perturbative Li-Cheng Tsai Lower-tail LDs of KPZ

  13. The lower-tail of h (2 t, 0) Physics results • [Kolokolov Korshunov 07] and [Meerson Katzav Vilenkin 16] predicted small/large | z | behaviors Math results • [Corwin Ghosal 18] obtained bounds ( ∀ t ≥ t 0 ) capturing small/large | z | behaviors Li-Cheng Tsai Lower-tail LDs of KPZ

  14. The lower-tail of h (2 t, 0) Physics results • [Kolokolov Korshunov 07] and [Meerson Katzav Vilenkin 16] predicted small/large | z | behaviors • [Sasorov Meerson Prolhac 17] predicted 5 4 4 2 1 15 π 6 (1 − π 2 z ) 2 − 2 π 2 z 2 Φ − ( z ) = 15 π 6 + 3 π 4 z − by WKB approx of an integral-diff eqn Math results • [Corwin Ghosal 18] obtained bounds ( ∀ t ≥ t 0 ) capturing small/large | z | behaviors Li-Cheng Tsai Lower-tail LDs of KPZ

  15. The lower-tail of h (2 t, 0) Physics results • [Kolokolov Korshunov 07] and [Meerson Katzav Vilenkin 16] predicted small/large | z | behaviors • [Sasorov Meerson Prolhac 17] predicted 5 4 4 2 1 15 π 6 (1 − π 2 z ) 2 − 2 π 2 z 2 Φ − ( z ) = 15 π 6 + 3 π 4 z − by WKB approx of an integral-diff eqn • [Corwin Ghosal Krajenbrink Le Doussal Tsai 18] same Φ − by log/Coulomb gas • [Krajenbrink Le Doussal Prolhac 18] same Φ − by cumulant expansion Math results • [Corwin Ghosal 18] obtained bounds ( ∀ t ≥ t 0 ) capturing small/large | z | behaviors Li-Cheng Tsai Lower-tail LDs of KPZ

  16. The lower-tail of h (2 t, 0) Physics results • [Kolokolov Korshunov 07] and [Meerson Katzav Vilenkin 16] predicted small/large | z | behaviors • [Sasorov Meerson Prolhac 17] predicted 5 4 4 2 1 15 π 6 (1 − π 2 z ) 2 − 2 π 2 z 2 Φ − ( z ) = 15 π 6 + 3 π 4 z − by WKB approx of an integral-diff eqn • [Corwin Ghosal Krajenbrink Le Doussal Tsai 18] same Φ − by log/Coulomb gas • [Krajenbrink Le Doussal Prolhac 18] same Φ − by cumulant expansion Math results • [Corwin Ghosal 18] obtained bounds ( ∀ t ≥ t 0 ) capturing small/large | z | behaviors • [Tsai 18] proof of Φ − by stochastic Airy operator Li-Cheng Tsai Lower-tail LDs of KPZ

  17. Result Theorem (Tsai 18) Consider the IC Z (0 , x ) = δ ( x ) . For z < 0 , as t → ∞ , � � 1 P [ h (2 t, 0) + t lim t 2 log 12 < tz ] = − Φ − ( z ) t →∞ 5 4 4 2 1 15 π 6 (1 − π 2 z ) 2 − 2 π 2 z 2 . where Φ − ( z ) := 15 π 6 + 3 π 4 z − Li-Cheng Tsai Lower-tail LDs of KPZ

  18. Exponential functional of Airy Point Process [Borodin Gorin 16] � ∞ 1 � t � � 12 + tz � e − Z (2 t, 0) e E = E Airy 1 + e − t 1 / 3 ( λ i + t 2 / 3 z ) i =1 λ 1 < λ 2 < . . . ∈ R (space-reversed) Airy Point Process Li-Cheng Tsai Lower-tail LDs of KPZ

  19. Exponential functional of Airy Point Process [Borodin Gorin 16] t � 12 + tz � � i =1 ψ t,z ( λ i ) � e − Z (2 t, 0) e e − � ∞ E = E Li-Cheng Tsai Lower-tail LDs of KPZ

  20. Exponential functional of Airy Point Process [Borodin Gorin 16] � � � i =1 ψ t,z ( λ i ) � e − � ∞ h (2 t, 0) + t P 12 < tz ≈ E Li-Cheng Tsai Lower-tail LDs of KPZ

  21. Laplace’s method / Varadhan’s lemma — a general picture � � i =1 ψ t,z ( λ i ) � e − ψ t,z ( ρ ) e − penalty ( ρ ) d ρ e − � ∞ = E � �� � :=d P [ ρ ] Li-Cheng Tsai Lower-tail LDs of KPZ

  22. Laplace’s method / Varadhan’s lemma — a general picture � i =1 ψ t,z ( λ i ) � � � �� e − � ∞ E ≈ exp − min ψ t,z ( ρ ) + penalty ( ρ ) ρ Li-Cheng Tsai Lower-tail LDs of KPZ

  23. Laplace’s method / Varadhan’s lemma — a general picture � i =1 ψ t,z ( λ i ) � � � �� e − � ∞ E ≈ exp − min ψ t,z ( ρ ) + penalty ( ρ ) ρ Examples [Corwin Ghosal 18] P [ ρ ≈ ρ sq ] ≈ 1 , but R ψ t,z ( λ ) ρ sq ( λ )d λ ≈ e − t 2 b 1 ( z ) . � e − Li-Cheng Tsai Lower-tail LDs of KPZ

  24. Laplace’s method / Varadhan’s lemma — a general picture � i =1 ψ t,z ( λ i ) � � � �� e − � ∞ E ≈ exp − min ψ t,z ( ρ ) + penalty ( ρ ) ρ Examples [Corwin Ghosal 18] R ψ t,z ( λ ) ρ push ( λ )d λ ≈ 1 , but � P [ ρ ≈ ρ sq ] ≈ 1 , but e − P [ ρ ≈ ρ push ] ≈ e − t 2 b 2 ( z ) . R ψ t,z ( λ ) ρ sq ( λ )d λ ≈ e − t 2 b 1 ( z ) . � e − Li-Cheng Tsai Lower-tail LDs of KPZ

  25. Stochastic Airy Operator Theorem (Ramirez Rider Virag 06) The Stochastic Airy Operator √ A := − d 2 2 W ′ ( x ) d x 2 + x + acting on Dom( A ) ⊂ L 2 ( R + ) has spectrum { λ 1 < λ 2 < . . . } , where W := standard BM. Li-Cheng Tsai Lower-tail LDs of KPZ

  26. Large deviations controlled by W ′ � � �� E [ e − � ∞ i =1 ψ t,z ( λ i ) ] ≈ exp − min ψ t,z ( ρ ) + penalty ( ρ ) ρ ρ = eigenvalues distribution of √ A = − d 2 2 W ′ ( x ) d x 2 + x + Li-Cheng Tsai Lower-tail LDs of KPZ

  27. Large deviations controlled by W ′ and then by v � � �� E [ e − � ∞ i =1 ψ t,z ( λ i ) ] ≈ exp − min ψ t,z ( ρ ) + penalty ( ρ ) ρ ρ = eigenvalues distribution of √ A = − d 2 2 W ′ ( x ) d x 2 + x + 2 3 v ( t − 2 Postulate: relevant deviations controlled by W ′ ( x ) ≈ t 3 x ) √ − f ′′ ( x ) + xf ( x ) + 2 W ′ ( x ) f ( x ) = λf ( x ) (eigen prob) 2 λ of order t 3 Li-Cheng Tsai Lower-tail LDs of KPZ

  28. Large deviations controlled by W ′ and then by v � � �� E [ e − � ∞ i =1 ψ t,z ( λ i ) ] ≈ exp − min ψ t,z ( ρ ( v )) + penalty ( v ) v ρ ( v ) = eigenvalues distribution of √ 2 3 v ( t − 2 A v = − d 2 3 x ) d x 2 + x + 2 t 2 3 v ( t − 2 Postulate: relevant deviations controlled by W ′ ( x ) ≈ t 3 x ) penalty( v ) = ρ ( v ) = Li-Cheng Tsai Lower-tail LDs of KPZ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend