far from equilibrium dynamics of systems with
play

Far-from-equilibrium dynamics of systems with conservation laws - PowerPoint PPT Presentation

Far-from-equilibrium dynamics of systems with conservation laws Frank Pollmann Technische Universitt Mnchen T. Rakovszky, TUM C.v Keyserlingk, Birmingham TRR Condensed Matter Physics in 80 FOR All the Cities: Online 2020 1807 Quantum


  1. Far-from-equilibrium dynamics of systems with conservation laws Frank Pollmann Technische Universität München T. Rakovszky, TUM C.v Keyserlingk, Birmingham TRR Condensed Matter Physics in 80 FOR All the Cities: Online 2020 1807

  2. Quantum thermalization Investigate whether/how closed quantum many-body systems thermalize: ρ Block = ρ Thermal t | i U t = exp( − itH ) [non-integrable] | i Closed quantum system [Srednicki, Deutsch, Rigol] Entanglement accumulated during time evolution

  3. Characterizing thermalization dynamics Long times: emergent hydrodynamic relaxation ∂ t e � D r 2 e = r f Weakly coupled systems: Quasi-particles → Boltzmann equation Strongly coupled systems: Dynamics of complex quantum-many body problem!

  4. Overview (1) Entanglement growth following a quantum quench ‣ Diffusive growth of Renyi entropies in systems with diffusive transport S α >1 S 1 ∝ t S α >1 ∝ t [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)] (2) Dissipation-assisted operator evolution method for capturing hydrodynamic transport ‣ Efficient calculation of spin and energy diffusion constants [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  5. Measuring the amount of entanglement Von Neumann entropy (entanglement entropy) S vN = − Tr ρ Block log ρ Block ‣ Convenient for theoretical considerations but not experimentally accessible Renyi entropies 1 1 − α log Tr ρ α S α = Block ‣ Experimentally accessible for α = 2 [Brydges et al. arxiv 1806.05747] ‣ S vN = S 1 [Kaufman et al. Science '16] [Islam et al. Nature ’15]

  6. Entanglement growth after a quantum quench How does the entanglement entropy grow? S vN ‣ Integrable systems → Quasiparticle picture: linear growth tJ S tJ [P . Calabrese and J. Cardy ’06] ‣ Linear growth of also holds for systems S vN without quasiparticles [Kim and Huse ’13]

  7. Linear entanglement growth in random circuit models q 2 × q 2 Each gate is a Haar random unitary ‣ both grow linearly (+ random fluctuations) S 1 , S 2 Nahum Ruhman, Vijay, Haah: PRX (2017) Nahum, Vijay, Haah: PRX (2018) von Keyserlingk, Rakovszky, FP , Sondhi: PRX (2018) Zhou, Nahum (arXiv 1804.09737) Chan, De Luca, Chalker: PRX (2018)

  8. Growth of Renyi entropies Conservation laws generically lead to diffusive growth of ! S α >1 ‣ U(1)-symmetric random circuit ‣ Maps to “classical” partition function: efficient calculation of the annealed average of 2 nd Rényi entropy [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)]

  9. Entanglement growth after a quantum quench Same behavior in a Hamiltonian with only energy conservation H = J ∑ Z r Z r +1 + h z Z r + h x X r r [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)]

  10. Entanglement growth after a quantum quench Same behavior in a Hamiltonian with only energy conservation H = J ∑ Z r Z r +1 + h z Z r + h x X r r rare states [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)]

  11. Intuitive picture Spin 1/2 chain with conservation S z (1) Write state as sum over histories in basis: S z (2) Split sum into two parts with . Diffusion: only down spins within distance can spoil the rare region 𝒫 ( t ) χ (3) Eckart-Young theorem: if has Schmidt rank | ϕ 0 ⟩ 2 : Rare events yield diffusive growth S α >1 S α ≤ 1 : Dominated by the mean, yielding ballistic growth Related work: Huang, arXiv:1902.00977 [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)]

  12. Overview (1) Entanglement growth following a quantum quench ‣ Diffusive growth of Renyi entropies in systems with diffusive transport S α >1 S 1 ∝ t S α >1 ∝ t [ Rakovszky , FP , von Keyserlingk, PRL 122 , 250602 (2019)] (2) Dissipation-assisted operator evolution method for capturing hydrodynamic transport ‣ Efficient calculation of spin and energy diffusion constants [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  13. Numerical complexity of many-body dynamics Directly simulate the time evolution within the full many-body Hilbert space | ψ ( t ) i = e − itH | ψ (0) i ‣ Complexity 10 spins dim=1‘024 ∝ exp( L ) 20 spins dim=1‘048‘576 ‣ Sparse methods 30 spins dim=1’073‘741‘824 (dynamical typicality) 40 spins dim=1‘099‘511‘627‘776 up to ~30 spins Matrix-Product State based numerics ‣ Complexity ∝ exp( t )

  14. “Information paradox" Quantum quench from product state ��� ���� � � � � � ���� ρ R : � � � � � � � � � � ��� ���� ���� � � � � � ���� ���� #Bits � � � � � � � � � � ��� ���� ���� � � � � � ���� ���� ���� ���� � � � � � � � � � � � � � � � Thermal state (locally) t τ th How to truncate entanglement without sacrificing crucial information on physical (local) observables? Approaches that still need to demonstrate ability to capture the correct hydro transport: [White et al.: PRB 2018] [Schmitt, Heyl: SciPost 2018] [Krumnow et al.: arXiv:1904.11999] [Wurtz et al.: Ann. Phys. 2018] [Parker et al., PRX 2019] [Leviatan et al., arXiv:1702.08894]

  15. Time-dependent variational principle (TDVP) Variational manifold: MPS states with fixed bond dimension A [2] j 2 A [3] j 3 A [4] j 4 A [5] j 5 A [1] j 1 ψ j 1 ,j 2 ,j 3 ,j 4 ,j 5 = α αβ βγ γδ δ Classical Lagrangian L [ α , ˙ α ] = h ψ [ α ] | i ∂ t | ψ [ α ] i � h ψ [ α ] | H | ψ [ α ] i Efficient evolution using a projected Hamiltonian [Haegeman et al. ’11, Dorando et al. ’09 ] ℋ χ ‣ Global conservation laws (energy, particles,…) [see also: Thermofield purification of the density matrix, Hallam, Morley, and A. G. Green ’19] [Leviatan, FP , Bardarson, Huse, Altman, arXiv:1702.08894]

  16. Time-dependent variational principle (TDVP) Ising model X JS z i S z i +1 − h ⊥ S x i − h || S z H = i i Ensemble of initial states: S + Energy relaxation L/ 2 | ψ (0) i ED TDVP [Leviatan, FP , Bardarson, Huse, Altman, arXiv:1702.08894]

  17. Time-dependent variational principle (TDVP) XXZ Model X j + S y i S y a i − j ( S x i S x j + ∆ S z i S z H = j ) i>j Sz relaxation Ensemble of initial states: S + L/ 2 | ψ (0) i ED TDVP ??? [Leviatan, FP , Bardarson, Huse, Altman, arXiv:1702.08894]

  18. Dissipation-assisted operator evolution method ”Artificial dissipation leads to a decay of operator entanglement, allowing us to capture the dynamics to long times” [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  19. Obtain dynamical correlations of conserved densities C ( x , t ) ≡ ⟨ q x ( t ) q 0 (0) ⟩ β =0 = ⟨ q x | e i ℒ t | q 0 ⟩ , ℒ | q x ⟩ ≡ [ H , q x ] = − i ∂ t | q x ⟩ Map operators to states: Problem: Complexity ∝ exp( t ) [Jonay, Huse, Nahum: arXiv:1803.00089]

  20. Artificial dissipation that not affects hydrodynamics Basis of operators: Pauli strings | q 0 ( t ) ⟩ = ∑ a 𝒯 | 𝒯⟩ 𝒯 = … ZX 1 1 YX 1 11 1 Y … 𝒯 Dissipator: 𝒠 ℓ * , γ | 𝒯⟩ = { | 𝒯⟩ if ℓ 𝒯 ≤ ℓ * e − γ ( ℓ 𝒯 − ℓ * ) | 𝒯⟩ otherwise Cutoff length #non-trivial Paulis ℓ * = (should be larger than support of conserved densities) Dissipation strength: γ [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  21. Artificial dissipation that not affects hydrodynamics Artificial dissipation that not affects hydrodynamics Modified evolution: dissipate after every Δ t 𝒠 ℓ * , γ | 𝒯⟩ = { q x ( N Δ t ) ⟩ ≡ ( 𝒠 ℓ * , γ e i ℒΔ t ) | 𝒯⟩ if ℓ 𝒯 ≤ ℓ * N | q x ⟩ | ˜ e − γ ( ℓ 𝒯 − ℓ * ) | 𝒯⟩ otherwise ‣ Key assumption: backflow from long to short operators is weak ‣ Compare: Short memory time in Zwanzig-Mori memory matrix [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  22. Dissipation stops growth of operator entanglement Represent dissipative evolution as tensor network Low-dimensional Matrix-Product Operator Time Evolving Block Decimation (TEBD) [Vidal ‘03] H = ∑ h j ≡ ∑ Test on Ising chain: g x X j + g z Z j + ( Z j − 1 Z j + Z j Z j +1 )/2 j j 10 − 1 3 . 5 γ = 0 . 25 3 . 0 10 − 2 γ = 0 . 10 j C j ( t ) | 2 . 5 γ = 0 . 05 h j ( t )] 10 − 3 γ = 0 . 04 2 . 0 γ = 0 . 03 S vN [˜ | 1 − P 10 − 4 1 . 5 1 . 0 χ = 32 χ = 256 10 − 5 χ = 64 χ = 512 0 . 5 χ = 128 g x = 1.4; g z = 0.9045 10 − 6 0 5 10 15 20 0 5 10 15 20 Time t Time t [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

  23. Diffusion constant from mean-square displacement d 2 ( t ) ≡ ∑ (MSD) C ( x , t ) x 2 C ( x , t ) ≡ ⟨ q x | ˜ q 0 ( t ) ⟩ x ` § = 2, ∆ t = 0 . 25, ∞ = 0 . 03 50 0 . 2 L = 9 t = 3 t = 7 40 L = 13 t = 11 L = 17 MSD d 2 ( t ) h h x h 0 ( t ) i t = 15 30 L = 21 t = 19 DAOE 0 . 1 t = 23 20 10 0 0 . 0 0 5 10 15 20 ° 20 ° 10 0 10 20 Time t Position x Time-dependent diffusion constant: 2 D ( t ) ≡ ∂ d 2 ( t ) ∂ t Diffusive transport: D ≡ lim t →∞ D ( t ) [ Rakovszky , von Keyserlingk, FP , arxiv:2004.05177]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend