a pulse driven lc vco with a figure of merit of 192dbc hz
play

A Pulse-Driven LC-VCO with a Figure-of-Merit of -192dBc/Hz Aravind - PowerPoint PPT Presentation

A Pulse-Driven LC-VCO with a Figure-of-Merit of -192dBc/Hz Aravind Tharayil Narayanan, Kento Kimura, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan b. b. Matsuzawa Matsuzawa & Okada Lab. & Okada


  1. A Pulse-Driven LC-VCO with a Figure-of-Merit of -192dBc/Hz Aravind Tharayil Narayanan, Kento Kimura, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan b. b. Matsuzawa Matsuzawa & Okada Lab. & Okada Lab. y y

  2. Contents u Motivation u Tackling Efficiency: Class-C VCO u Efficiency and MOS Sizing u Effects of Large MOS u AM-PM Conversion Phenomenon u Pulse Drive Technique u Proposed VCO u Simulation and Measurement Results u Conclusion 1

  3. Motivation Low power TRx is required for next gen portable devices 19mA VCO 38% RX 62% 30mA [1] H. Darabi, JSSC 2011. VCO – A major power consumer in TRx. VCO for next generation wireless devices u High purity u High efficiency u Small area 2

  4. Tackling Efficiency: Class-C VCO VDD V DS V DD V P V N V gbias 2 Class-B ≈ I B π I DS V TH M1 M2 ≈ I B −Φ Φ Class-C I DS - ϖ - ϖ 0 ϖ ϖ I B C Tail 2 2 Ø High current efficiency [2] A. Mazzanti and P. Andreani, JSSC 2008. 3

  5. Efficiency and MOS sizing V DS V DD V TH ! !"# = ! !! − ( ! !" − ! !" ) ! V GS I max1 For high efficiency Φ 1 −Φ 1 I DS1 Ø Large A max Small MOS I max2 Ø Small V GS Ø Small conduction angle −Φ 2 −Φ 2 I DS2 - ϖ - ϖ 0 ϖ ϖ 2 Large MOS 2 Ø Large MOS required for better efficiency [2] A. Mazzanti and P. Andreani, JSSC 2008. 4

  6. Effects of Large MOS VDD Behavior of C gs C GS V P V N C H C gs C T V gbias C L V TH V DS+TH V GS M1 M2 C gs,M1 C gs,M2 (saturation) V Tail C Tail (cut-off) Ø Tank capacitance is susceptive to V GS variations. 5

  7. AM-PM Conversion in Class-C VCO VDD Time Domain Analysis V V P V N V DS V DD C GS V TH V GS ∆ V GS1 ∆ V GS2 -R t C GS Bias ∆ C 1 ∆ C 2 C GS C H t C T f f 0 - Δ f 1 f 0 - Δ f 2 C L δ f -2 ϖ - ϖ 0 ϖ 2 ϖ V GS Ø Variations in C GS translates to phase noise. 6

  8. AM-PM conversion- Contd. -90 simula � on Large AM-PM Phase Noise [dBc/Hz] with AM-PM -95 without AM-PM -100 -105 Small Φ -110 -115 -0.3 0.0 0.3 0.6 V gbias [V] Ø Smaller Φ with smaller transistor size. 7

  9. Issue of Class-C VCO V V DS I DS V DD V TH V gbias V GS t t - ϖ - ϖ - ϖ - ϖ 0 0 ϖ ϖ ϖ ϖ 2 2 2 2 V GS -V TH must be small for small Φ Large MOS is required for larger current Ø Smaller Φ with smaller transistor size. 8

  10. Proposed Pulse-Driven VCO V V DS I DS V DD V TH V gbias V GS t t - ϖ - ϖ 0 ϖ ϖ V 2 2 V DS I DS V DD V TH V GS V SS t t - ϖ - ϖ - ϖ - ϖ 0 0 ϖ ϖ ϖ ϖ 2 2 2 2 Conduction angle is independent of MOS size. 9

  11. Analysis: AM-PM Conversion VDD Time Domain Analysis V V P V N ∆ V GS1 ∆ V GS2 V DS V DD V TH C GS V GS 0 t -R C GS C T Pulse Drive C L C GS t C H C T f f 0 - Δ f f 0 - Δ f f 0 C L t -2 ϖ - ϖ 0 ϖ 2 ϖ V GS AM-PM translation is minimized. 10

  12. Proposed Circuit Schematic conduction angle VDD control VDD VDD Amplitude V P V N regenerator IB IB R b R b C b C b V bp V bn M1 M2 V Tail M Tail C Tail 11

  13. Pulse Drive: Startup A Tank V DD Cond. Angle Amplitude Control Regeneration V(N B ) ϖ VDD θ N B V Init V bp IB V TH R b C b M b V p Sense Class-AB Class-B Induced Class-C V bp V DD High robustness 0 ϖ t 12 θ

  14. Pulse Drive: Startup Contd . A Tank V DD Cond. Angle Amplitude Control Regeneration V(N B ) ϖ VDD θ N B V Init V bp IB V TH R b C b M b V p Sense Class-AB Class-B Induced Class-C V bp V DD 0 ϖ t 13 θ

  15. Pulse Drive: Steady State A Tank V DD Cond. Angle Amplitude Control Regeneration V(N B ) ϖ θ VDD N B V Init V bp IB V TH R b C b M b V p Sense Class-AB Class-B Induced Class-C V bp V DD High Efficiency 0 ϖ t 14 θ

  16. Noise from the additional MOS V DS V DD L P C P C CC 0 V P T 1 ISF L P C P τ V N Pulse Generator 0 I DS τ V DD -2 ϖ - ϖ 0 2 ϖ ϖ Delay introduced by the inverter is within safe ISF region. Delay becomes trivial in advanced processes. 15

  17. Noise Contribution V P V N Tank 40 P_Drive P_Drive Noise Contribution (%) N 1 N 2 30 M CC M CC 20 M Tail C Tail V Tail 10 M BIAS VDD IB 0 N 1 R BIAS Misc. M CC M TAIL R BIAS M BIAS Tank C b M b Components V p Noise introduced by the driver circuitry is small. 16

  18. Chip Micrograph Reference VCO Proposed VDD VDD V P V N V P V N V gbias Pulse Pulse Drive Drive M1 M1 M2 M2 V Tail V Tail C Tail C Tail 250 250 62 45 Pulse Drive 500 500 17

  19. Measurement Results -50 Phase Noise [dBc/Hz] -60 -70 Reference VCO -80 P dc = 2.54mW -90 FoM = -190dBc/Hz -100 -110 This work -120 P dc = 2.05mW -130 FoM = -192dBc/Hz -140 -150 1k 10k 100k 1M 10M Offset Frequency [Hz] 18

  20. Performance Comparison CMOS Frequency Phase Noise Pdc FoM Process [GHz] [dBc/Hz] [mW] [dBc/Hz] [1] JSSC2008 130nm 4.9 -130@1MHz 1.30 -196 [2] VLSI2009 180nm 4.5 -109@1MHz 0.16 -190 [3] JSSC2013 180nm 4.84 -125@1MHz 3.40 -193 [4] ESSCIRC2011 90nm 5.1 -120@1MHz 0.86 -192 [5] JSSC2013 65nm 3.7 -142@3MHz 15.0 -192 [6] JSSC2013 65nm 4.8 -144@10Mhz 4.00 -191 This Work 180nm 3.6 -124@1MHz 2.05 -192 [1] A. Mazzanti and P. Andreani, JSSC 2008. [2] K. Okada et al ., VLSI 2009. [3] W. Deng et al ., JSSC 2013. [4] M. Tohidian et al ., ESSCIRC 2011. [5] M. Babaie et al ., JSSC 2013. [6] L. Fanori et al ., JSSC 2008 19

  21. Conclusion Ø A phenomenon in class-C VCO due to which AM noise is up-converted to PN is identified. Ø A new technique namely “pulse-drive” is proposed to alleviate AM-PM conversion issue. Ø The proposed pulse-drive technique avoids AM-PM conversion without sacrificing efficiency. Ø A VCO is implemented using the proposed pulse- drive technique and tested to verify the claims. Ø The proposed circuit is however process dependent and has limited frequency of operation. 20

  22. Simulated Waveforms (1) 0.9 6.E-03 0.8 5.E-03 0.7 4.E-03 0.6 Current (A) Voltage (V) 3.E-03 0.5 0.4 2.E-03 0.3 1.E-03 0.2 0.E+00 0.1 0 -1.E-03 3.85E-07 3.85E-07 3.85E-07 3.85E-07 3.85E-07 Time (s) 21

  23. Simulated Waveforms (2) 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend