a pulse driven vco with enhanced efficiency
play

A Pulse-Driven VCO with Enhanced Efficiency Aravind Tharayil - PowerPoint PPT Presentation

A Pulse-Driven VCO with Enhanced Efficiency Aravind Tharayil Narayanan, Kento Kimura, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan b. b. Matsuzawa Matsuzawa & Okada Lab. & Okada Lab. y y


  1. A Pulse-Driven VCO with Enhanced Efficiency Aravind Tharayil Narayanan, Kento Kimura, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan b. b. Matsuzawa Matsuzawa & Okada Lab. & Okada Lab. y y

  2. Contents ! Motivation ! Evaluation of VCO Topologies ! Effects of MOSFET Sizing ! Pulse VCO ! Measurement Results ! Conclusion 1

  3. Motivation Low power TRx is required for next gen portable devices 19mA VCO 38% RX 62% 30mA [H. Darabi, JSSC 2011] VCO – A major power consumer in TRx. VCO for next generation wireless devices ! High purity ! High efficiency ! Small area 2

  4. Evaluation of VCO Topologies Generalized expression for phase noise Figure of Merit (FoM) facilitates fair VCO comparison Assuming 100% efficiency and noise free active elements: FoM MAX depends only on Q [A. Hajmiri, JSSC 1998] 3 [M. Garampazzi, ESSCIRC 2014]

  5. Evaluation of VCO Topologies Excess Noise Factor (ENF) ENF = FoM MAX – FoM ENF depends only on topology For high performance VCOs: 1. Increase power efficiency 2. Decrease noise sensitivity 4 [M. Garampazzi, ESSCIRC 2014]

  6. High Efficiency VCOs VDD VDD LDO VDD V P V N V P V N K M V gbias V P V N VDD M1 M2 M1 M2 V Tail M1 M2 V Tail C Tail C Tail M3 M3 Class-C Class-D Class-F High Current High Voltage Low Noise efficiency Efficiency Sensitivity 5 [P. Andreani, JSSC 2008] [L. Fanori, JSSC 2013] [M. Babaie, JSSC 2013]

  7. High Efficiency VCOs ✗ High ! i " Additional area. " Limited improvement. ✗ Low η V η P = η I × η V " Supply pushing. η I : Current efficiecny " Loading effects. η V : Voltage efficiecny " Reliability issues. ✓ High η I " Good candidate for practical high efficiency VCO. [P. Andreani, JSSC 2008] [L. Fanori, JSSC 2013] 6 [M. Babaie , JSSC 2013] [A. Visweswaran, ISSCC 2012]

  8. Tackling Efficiency: Class-C VCO V ds V ds A t V DD V DD V gs V th V gbais V gs - V th −Φ Φ I bias I ds I ds - ϖ 2 - ϖ - ϖ 2 - ϖ ϖ ϖ 2 ϖ ϖ 2 0 0 (a) (b) Class-C achieves high current efficiency 7 [A. Mazzanti and P. Andreani, JSSC 2008]

  9. Efficiency and MOS sizing V DS V DD V TH ! !"# = ! !! − ( ! !" − ! !" ) ! V GS I max1 For high efficiency Φ 1 −Φ 1 I DS1 # Large A max Small MOS I max2 # Small V GS # Small conduction angle −Φ 2 −Φ 2 I DS2 - ϖ - ϖ 0 ϖ ϖ 2 2 Large MOS Large MOS required for better efficiency 8 [K. Okada, VLSI Circuits 2009]

  10. Noise Contribution of MOSFET 20 MOS Noise [dB] 15 10 5 0 ϖ ϖ 0 4 2 Conduction Angle [rad] Low conduction angles increases the noise from MOSFETs 9

  11. Large MOS - Secondary Effects VDD Behavior of C gs C GS V P V N C H C gs C T V gbias C L V TH V DS+TH V GS M1 M2 C gs,M1 C gs,M2 (cut-off) V Tail C Tail (saturation) Tank capacitance is susceptive to V GS variations 10

  12. AM-PM Conversion in Class-C VCO VDD Time Domain Analysis V V P V N V DS V DD C GS V TH V GS ∆ V GS1 ∆ V GS2 -R t C GS Bias ∆ C 1 ∆ C 2 C GS C H t C T f f 0 - Δ f 1 f 0 - Δ f 2 C L δ f -2 ϖ - ϖ 0 ϖ 2 ϖ V GS Variations in C GS translates to phase noise 11

  13. Effects of MOS sizing -90 Phase Noise [dBc/Hz] simula � on including MOS sizing e ff ects -95 excluding MOS sizing e ff ects -100 -105 -110 -115 -0.3 0.0 0.3 0.6 V gbias [V] Lowering V GS worsens the phase noise 12

  14. Pulse Drive: The Concept V A t V ds V DD t 0 V gbias V gs - V th I ds - Φ Φ t - ϖ - ϖ 0 ϖ 2 ϖ 2 Conduction angle is varied by varying gate voltage 13

  15. Pulse Drive: The Concept V A t V ds V DD V gs t 0 I ds −Φ Φ t - ϖ 0 ϖ 2 - ϖ ϖ 2 Conduction angle is controlled by pulse width 14

  16. Noise Contribution of MOSFET 20 MOS Noise [dB] 15 Class-C 10 Pulse VCO 5 0 ϖ ϖ 0 4 2 Conduction Angle [rad] MOSFET noise is kept under limit 15

  17. Theoretical Limit of ENF 20 Class-C Pulse-Drive 15 ENF [dB] 10 5 0 ϖ ϖ 0 4 2 Conduction Angle [rad] Pulse VCO achieves ~5dB improvement in ENF when compared to class-C topology 16

  18. Analysis: AM-PM Conversion VDD Time Domain Analysis V V P V N ∆ V GS1 ∆ V GS2 V DS V DD V TH C GS V GS 0 t -R C GS C T Pulse Drive C L C GS t C H C T f f 0 - Δ f f 0 - Δ f f 0 C L t -2 ϖ - ϖ 0 ϖ 2 ϖ V GS AM-PM translation is minimized. 17

  19. Proposed Circuit Schematic conduction angle VDD control VDD VDD Amplitude V P V N regenerator IB IB R b R b C b C b V bp V bn M1 M2 V Tail M Tail C Tail 18

  20. Pulse Drive: Startup A Tank V DD Cond. Angle Amplitude Control Regeneration V(N B ) ϖ VDD θ N B V Init V bp IB V TH R b C b M b V p Sense Class-AB Class-B Induced Class-C V bp V DD High robustness 0 ϖ t 19 θ

  21. Pulse Drive: Startup Contd . A Tank V DD Cond. Angle Amplitude Control Regeneration V(N B ) ϖ VDD θ N B V Init V bp IB V TH R b C b M b V p Sense Class-AB Class-B Induced Class-C V bp V DD 0 ϖ t 20 θ

  22. Pulse Drive: Steady State A Tank V DD Cond. Angle Amplitude Control Regeneration V(N B ) ϖ θ VDD N B V Init V bp IB V TH R b C b M b V p Sense Class-AB Class-B Induced Class-C V bp V DD High Efficiency 0 ϖ t 21 θ

  23. Chip Micrograph Reference VCO Proposed VDD VDD V P V N V P V N V gbias Pulse Pulse Drive Drive M1 M1 M2 M2 V Tail V Tail C Tail C Tail 250 250 62 45 Pulse Drive 500 500 22

  24. Measurement Results -50 -60 -70 Reference VCO -80 P dc = 2.54mW -90 FoM = -190dBc/Hz -100 -110 This work -120 P dc = 2.05mW -130 FoM = -192dBc/Hz -140 -150 1k 10k 100k 1M 10M • Current implementation limits the maximum achievable frequency. • Spikes in the frequency spectrum can be removed by circuit techniques. 23

  25. Performance Comparison CMOS Frequency Phase Noise Pdc FoM Process [GHz] [dBc/Hz] [mW] [dBc/Hz] [1] JSSC2008 130nm 4.9 -130@1MHz 1.30 -196 [2] VLSI2009 180nm 4.5 -109@1MHz 0.16 -190 [3] JSSC2013 180nm 4.84 -125@1MHz 3.40 -193 [4] ESSCIRC2011 90nm 5.1 -120@1MHz 0.86 -192 [5] JSSC2013 65nm 3.7 -142@3MHz 15.0 -192 [6] JSSC2013 65nm 4.8 -144@10Mhz 4.00 -191 This Work 180nm 3.6 -124@1MHz 2.05 -192 [1] A. Mazzanti and P. Andreani, JSSC 2008. [2] K. Okada et al ., VLSI 2009. [3] W. Deng et al ., JSSC 2013. [4] M. Tohidian et al ., ESSCIRC 2011. [5] M. Babaie et al ., JSSC 2013. [6] L. Fanori et al ., JSSC 2008 24

  26. Conclusion # Techniques for high performance, low power VCOs are briefly introduced. # A performance limiting factor in class-C VCO is identified. # Pulse Bias technique is proposed, which can achieve very high efficiency. # A VCO working on the proposed pulse-bias scheme is presented along with measurement results. 25

  27. APPENDIX 26

  28. Noise from the additional MOS V DS V DD L P C P C CC 0 V P T 1 ISF L P C P τ V N Pulse Generator 0 I DS V DD Delay introduced by the inverter is within safe ISF region. Delay becomes trivial in advanced processes. 27

  29. Noise Contribution V P V N Tank 40 P_Drive P_Drive Noise Contribution (%) N 1 N 2 30 M CC M CC 20 M Tail C Tail V Tail 10 M BIAS VDD IB 0 N 1 R BIAS Misc. M CC M TAIL Tank R BIAS M BIAS C b M b Components V p Noise introduced by the driver circuitry is small. 28

  30. Simulated Waveforms (1) 0.9 6.E-03 0.8 5.E-03 0.7 4.E-03 0.6 Current (A) Voltage (V) 3.E-03 0.5 0.4 2.E-03 0.3 1.E-03 0.2 0.E+00 0.1 0 -1.E-03 3.85E-07 3.85E-07 3.85E-07 3.85E-07 3.85E-07 Time (s) 29

  31. Simulated Waveforms (2) 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend