transition form factors and hlbl from dyson schwinger
play

Transition form factors and HLBL from Dyson-Schwinger equations - PowerPoint PPT Presentation

Transition form factors and HLBL from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universitt Gieen June 2018 Together with Gernot Eichmann, Esther Weil, Richard Williams 1 Christian S. Fischer (University of Gieen)


  1. Transition form factors and HLBL 
 from Dyson-Schwinger equations Christian S. Fischer Justus Liebig Universität Gießen June 2018 Together with Gernot Eichmann, Esther Weil, Richard Williams 1 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  2. Overview F(Q,Q’) 1.(Transition-) form factors DSE TFF LMD+V Q 2.Hadronic light by light 2 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  3. Nonperturbative QCD: Complementary approach Quarks and gluons Dyson-Schwinger Equations Lattice simulations Physical quark masses Ab initio Full momentum dependencies Gauge invariant Multi-scale problems feasible Hadrons Effective theories and models ( χ PT, chiral models,...) Dispersive approach Physical degrees of freedom 3 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  4. DSE-approach: truncations [ S ( p )] − 1 = [ − ip / + M ( p 2 )] /Z f ( p 2 ) Rainbow-Ladder (RL): Beyond the rainbow (BRL): backup slides Williams, CF, Heupel, PRD 93 (2016) 034026 CF, Williams, PRL 103 (2009) 122001 4 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  5. (Transition-) Form factors and decays Pion form factor: Pion transition FF Q 2 π π π 0 → e + e − e + e − π 0 → e + e − γ 5 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  6. (Transition-) Form factors and decays Pion form factor: Pion transition FF Q 2 π π π 0 → e + e − e + e − π 0 → e + e − γ 5 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  7. (Transition-) Form factors and decays Pion form factor: Pion transition FF Q 2 π π π 0 → e + e − e + e − π 0 → e + e − γ 5 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  8. (Transition-) Form factors and decays Pion form factor: Pion transition FF Q 2 π π π 0 → e + e − e + e − π 0 → e + e − γ 5 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  9. Quark mass and pion BSE π [ S ( p )] − 1 = [ − ip / + M ( p 2 )] /Z f ( p 2 ) Dynamical mass: M ≈ 350 MeV 0.4 Lattice: quenched Lattice: unquenched (N f =2+1) h ¯ DSE: quenched ΨΨ i ⇡ (250 MeV) 3 0.3 DSE: unquenched (N f =2) M(p) [GeV] GMOR 0.2 0.1 0.0 0.0 1.0 2.0 3.0 4.0 p [GeV] CF, Nickel, Williams, EPJ C 60 (2009) 47 6 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  10. Quark mass and pion BSE π [ S ( p )] − 1 = [ − ip / + M ( p 2 )] /Z f ( p 2 ) Dynamical mass: M ≈ 350 MeV 0.4 Lattice: quenched Lattice: unquenched (N f =2+1) h ¯ DSE: quenched ΨΨ i ⇡ (250 MeV) 3 0.3 DSE: unquenched (N f =2) M(p) [GeV] GMOR NJL 0.2 0.1 0.0 0.0 1.0 2.0 3.0 4.0 p [GeV] CF, Nickel, Williams, EPJ C 60 (2009) 47 6 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  11. Quark-photon vertex and dynamical vector mesons Basis: k { γ µ , Q µ , k µ } ⊗ { 1 , Q / , k / , Q / k / } Q 12 elements X λ i L µ X τ i T µ Γ µ ( k, Q ) = Γ µ BC ( k, Q ) + Γ µ T ( k, Q ) = i + i i =1 , 4 i =1 , 8 gauge part transverse part ‘Ball-Chiu’ vector-mesons Ball and Chiu, PRD 22 (1980) 2542. WTI: Q µ Γ µ ( k, Q ) = S − 1 ( k + Q/ 2) − S − 1 ( k − Q/ 2) ✓ EM gauge invariance satisfied Vector mesons: dynamically generated ✓ 7 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  12. Pion form factor 2 ( ) F Q not timelike: spacelike: ¯ e + e − → X ¯ + accessible e e N N e e − X → e − X N e N − X → − − → ’’ charge, ’ magnetic moment,... radius 2 0 2 Q 4 M − Pion form factor: Q 2 π π Krassnigg, Schladming 2011; Maris, Tandy NPPS 161, 2006 Vector meson poles dynamically generated! : backup slides ρ → ππ Williams, arXiv:1804.11161 8 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  13. Pion form factor 2 ( ) F Q not timelike: spacelike: ¯ e + e − → X ¯ + accessible e e N N e e − X → e − X N e N − X → − − → ’’ charge, ’ magnetic moment,... radius 2 0 2 Q 4 M − Pion form factor: Q 2 excluded region π π Krassnigg, Schladming 2011; Maris, Tandy NPPS 161, 2006 Vector meson poles dynamically generated! : backup slides ρ → ππ Williams, arXiv:1804.11161 8 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  14. Pion transition form factor Q 2 Q 0 2 η + = Q 2 + Q 0 2 2 Maris, Tandy, Phys. Rev. C 65 045211 (2002) Eichmann, CF, Weil and Williams, PLB 774 (2017) 425 9 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  15. <latexit sha1_base64="0H8KtlL0Lq2K8WGbMfpe+Jq+zUo=">AEe3icfZPdbtMwFIC9tcAofx1chOogAEhSyoquEGaSiW4GKJFdJu0dJXjuIkVx4lsp1uJ8hY8DbfwEjwMEm6T0jZtOVako3M+nx/nHCemREjT/L2zW6leu35j72bt1u07d+/V9+fiCjhCPdRCN+5kCBKWG4L4mk+CzmGIYOxadO8H7qPx1jLkjEvspJjAch9BgZEQSlMg3rxqX29J120Ltovuw9u2g+P2zadu3b3PYqty3cw3rDNMyZaOuKVSgNUEh3uF9p2W6EkhAziSgU4twyYzlIZcEUZzV7ETgGKIAevjcHZNYMBhiMUivZr1l2hPld7VRxNXHpDazLl9KYSjEJHQUGULpi7Jvatzo8ziMfYKETqHEVyrEai2JHL0dpITFicQM5XWMEqrJSJu+o+YSjpGkE6VAxInqRkM+5BJ9do1m+FLFIUhZG5qx0I17mdpbD+ankNbz1aBoACbUC3ALo5sAnpFEhnO9L1C8b2odT+E6tXcL3tyPE81LGaNRcuYTXbxSM1jbM/lXYgDz5wjFmWcs/JUlM3jZuZutUmyZ4AenWNJyRoerbDne5gQFX7CblYpSUzBHPhGXEc+Xs6glzPX+YvyoyzwmwKE8JFNjUxTMIy4eWNF9DGPNGils+UjPEcUotmldqXTlpGpZpWL3XjaN2sXJ74CF4DA6ABd6AI/ARdEfIPAd/A/wa/Kn2qj+qKq5+juTnHnAViRausvqMx+Ug=</latexit> <latexit sha1_base64="0H8KtlL0Lq2K8WGbMfpe+Jq+zUo=">AEe3icfZPdbtMwFIC9tcAofx1chOogAEhSyoquEGaSiW4GKJFdJu0dJXjuIkVx4lsp1uJ8hY8DbfwEjwMEm6T0jZtOVako3M+nx/nHCemREjT/L2zW6leu35j72bt1u07d+/V9+fiCjhCPdRCN+5kCBKWG4L4mk+CzmGIYOxadO8H7qPx1jLkjEvspJjAch9BgZEQSlMg3rxqX29J120Ltovuw9u2g+P2zadu3b3PYqty3cw3rDNMyZaOuKVSgNUEh3uF9p2W6EkhAziSgU4twyYzlIZcEUZzV7ETgGKIAevjcHZNYMBhiMUivZr1l2hPld7VRxNXHpDazLl9KYSjEJHQUGULpi7Jvatzo8ziMfYKETqHEVyrEai2JHL0dpITFicQM5XWMEqrJSJu+o+YSjpGkE6VAxInqRkM+5BJ9do1m+FLFIUhZG5qx0I17mdpbD+ankNbz1aBoACbUC3ALo5sAnpFEhnO9L1C8b2odT+E6tXcL3tyPE81LGaNRcuYTXbxSM1jbM/lXYgDz5wjFmWcs/JUlM3jZuZutUmyZ4AenWNJyRoerbDne5gQFX7CblYpSUzBHPhGXEc+Xs6glzPX+YvyoyzwmwKE8JFNjUxTMIy4eWNF9DGPNGils+UjPEcUotmldqXTlpGpZpWL3XjaN2sXJ74CF4DA6ABd6AI/ARdEfIPAd/A/wa/Kn2qj+qKq5+juTnHnAViRausvqMx+Ug=</latexit> <latexit sha1_base64="0H8KtlL0Lq2K8WGbMfpe+Jq+zUo=">AEe3icfZPdbtMwFIC9tcAofx1chOogAEhSyoquEGaSiW4GKJFdJu0dJXjuIkVx4lsp1uJ8hY8DbfwEjwMEm6T0jZtOVako3M+nx/nHCemREjT/L2zW6leu35j72bt1u07d+/V9+fiCjhCPdRCN+5kCBKWG4L4mk+CzmGIYOxadO8H7qPx1jLkjEvspJjAch9BgZEQSlMg3rxqX29J120Ltovuw9u2g+P2zadu3b3PYqty3cw3rDNMyZaOuKVSgNUEh3uF9p2W6EkhAziSgU4twyYzlIZcEUZzV7ETgGKIAevjcHZNYMBhiMUivZr1l2hPld7VRxNXHpDazLl9KYSjEJHQUGULpi7Jvatzo8ziMfYKETqHEVyrEai2JHL0dpITFicQM5XWMEqrJSJu+o+YSjpGkE6VAxInqRkM+5BJ9do1m+FLFIUhZG5qx0I17mdpbD+ankNbz1aBoACbUC3ALo5sAnpFEhnO9L1C8b2odT+E6tXcL3tyPE81LGaNRcuYTXbxSM1jbM/lXYgDz5wjFmWcs/JUlM3jZuZutUmyZ4AenWNJyRoerbDne5gQFX7CblYpSUzBHPhGXEc+Xs6glzPX+YvyoyzwmwKE8JFNjUxTMIy4eWNF9DGPNGils+UjPEcUotmldqXTlpGpZpWL3XjaN2sXJ74CF4DA6ABd6AI/ARdEfIPAd/A/wa/Kn2qj+qKq5+juTnHnAViRausvqMx+Ug=</latexit> <latexit sha1_base64="0H8KtlL0Lq2K8WGbMfpe+Jq+zUo=">AEe3icfZPdbtMwFIC9tcAofx1chOogAEhSyoquEGaSiW4GKJFdJu0dJXjuIkVx4lsp1uJ8hY8DbfwEjwMEm6T0jZtOVako3M+nx/nHCemREjT/L2zW6leu35j72bt1u07d+/V9+fiCjhCPdRCN+5kCBKWG4L4mk+CzmGIYOxadO8H7qPx1jLkjEvspJjAch9BgZEQSlMg3rxqX29J120Ltovuw9u2g+P2zadu3b3PYqty3cw3rDNMyZaOuKVSgNUEh3uF9p2W6EkhAziSgU4twyYzlIZcEUZzV7ETgGKIAevjcHZNYMBhiMUivZr1l2hPld7VRxNXHpDazLl9KYSjEJHQUGULpi7Jvatzo8ziMfYKETqHEVyrEai2JHL0dpITFicQM5XWMEqrJSJu+o+YSjpGkE6VAxInqRkM+5BJ9do1m+FLFIUhZG5qx0I17mdpbD+ankNbz1aBoACbUC3ALo5sAnpFEhnO9L1C8b2odT+E6tXcL3tyPE81LGaNRcuYTXbxSM1jbM/lXYgDz5wjFmWcs/JUlM3jZuZutUmyZ4AenWNJyRoerbDne5gQFX7CblYpSUzBHPhGXEc+Xs6glzPX+YvyoyzwmwKE8JFNjUxTMIy4eWNF9DGPNGils+UjPEcUotmldqXTlpGpZpWL3XjaN2sXJ74CF4DA6ABd6AI/ARdEfIPAd/A/wa/Kn2qj+qKq5+juTnHnAViRausvqMx+Ug=</latexit> Pion transition form factor F(Q,Q’) w = ( Q 2 + Q 0 2 ) / 2 z = ( Q 2 − Q 0 2 ) / ( Q 2 + Q 0 2 ) DSE TFF LMD+V 5 Q Eichmann, CF, Weil and Williams, PLB 774 (2017) 425 agrees with LMD+V at small Q correct symm./asymm. UV limits no ‘wiggles’ at large Q in contrast to LMD+V 10 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  16. Scalar + axial vector transition from factors 11 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  17. Rare pion decay ◆ 2 s B ( π 0 → e + e − ) ✓ m α em 1 − 4 m 2 | A ( − m 2 π / 4) | 2 = 2 B ( π 0 → γγ ) π m π m 2 π Usual: dispersive approach DSE: direct calculation same result as everybody else discrepancy with exp. remains Weil, Eichmann, CF and Williams, PRD96 (2017) no.1, 014021 12 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  18. More rare decays π 0 → e + e − γ π 0 → e + e − e + e − Weil, Eichmann, CF and Williams, Phys.Rev. D96 (2017) no.1, 014021 13 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

  19. Overview F(Q,Q’) 1.(Transition-) form factors DSE TFF LMD+V Q 2.Hadronic light by light 14 Christian S. Fischer (University of Gießen) Hadronic light-by-light from DSEs / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend