hadronic edms from dyson schwinger rho meson nucleon
play

Hadronic EDMs from Dyson-Schwinger: Rho-Meson & Nucleon Mario - PowerPoint PPT Presentation

Hadronic EDMs from Dyson-Schwinger: Rho-Meson & Nucleon Mario Pitschmann Institute of Atomic and Subatomic Physics, Vienna University of Technology January 22 nd , 2015 / ACFI Introduction Introduction Part A: The Theoretical Framework Part


  1. Hadronic EDMs from Dyson-Schwinger: Rho-Meson & Nucleon Mario Pitschmann Institute of Atomic and Subatomic Physics, Vienna University of Technology January 22 nd , 2015 / ACFI

  2. Introduction Introduction Part A: The Theoretical Framework Part B: The ρ Meson Part C: The Nucleon

  3. Introduction: The Energy Scale & Effective EDM Operators for dim ≥ 4 at scale ∼ 1 GeV Calculation of hadronic EDMs naturally splits into 2 parts Calculation of Wilson coefficients 1 by integrating out short distances Switching from perturbative quark-gluon description to 2 non-perturbative treatment – (much harder and larger uncertainties) Effective EDM Operators for dim ≥ 4 at scale ∼ 1 GeV Θ g 2 = − i ¯ L 1 GeV 32 π 2 G a s µν ˜ G a µν M − i q σ µν γ 5 q F µν − i q 1 � � ˜ 2 λ a σ µν γ 5 q G a d q ¯ 2 g s d q ¯ µν 2 q = u , d q = u , d + i K Λ 2 ε ij (¯ Q i d )(¯ Q j γ 5 u ) + · · ·

  4. Part A: The Theoretical Framework

  5. 1. Dyson-Schwinger Equations

  6. Dyson-Schwinger Equation Non-perturbative continuum approach to any QFT A shift in the integration variable ( ϕ ( x ) → ϕ ( x ) + λ ( x ) ), does not change the path integral for suitable b.c., i.e. D [ ϕ ] δ � δϕ f [ ϕ ] = 0 Application to the generating functional Z [ J ] yields � � − δ S � d 4 x J ϕ = 0 e − S + � D [ ϕ ] δϕ + J � d 4 x L . This can be rewritten as with the action S = � δ � − δ S � � + J Z [ J ] = 0 δϕ δ J

  7. Dyson-Schwinger Equation In QCD the fermion propagator is obtained by derivation of � δ � δ S η, − δ δη, δ � � − + η ( x ) Z [ η, ¯ η, J ] = 0 δ ¯ ψ ( x ) δ ¯ δ J µ with respect to η leading after several formal manipulations to the Gap Equation for the quark propagator S F ( p ) − 1 = i / p Z 2 + m q ( µ ) Z 4 d 4 q λ i � ( 2 π ) 4 g 2 D µν ( k − p ) γ µ + Z 1 2 S F ( k )Γ ν ( k , p ) − 1 − 1 − =

  8. Dyson-Schwinger Equation Gap equation contains the full vertex Γ µ and full gluon 1 propagator D µν ( k − p ) , each satisfies it’s own DSE DSE for the full vertex Γ µ contains the four-point vertex , 2 which has it’s own DSE . . . = ⇒ DSE is an infinite tower of equations relating all correlation functions DSE are exact relations and are the quantum Euler-Lagrange equations for any QFT Perturbative Expansion yields standard perturbative QFT

  9. 2. Bethe-Salpeter Equations

  10. Bethe-Salpeter Equations Bethe-Salpeter equation is the DSE describing a bound 2 body system Obtained by four derivatives of the generating functional and several formal manipulations d 4 q � q + P q − P � � � � Γ( k ; P ) = ( 2 π ) 4 K ( q , k ; P ) S F Γ( q ; P ) S F 2 2 Solutions for discrete set P 2 yield mass spectra =

  11. Rainbow-Ladder Truncation A symmetry-preserving truncation of the infinite set of DSEs which respects relevant (global) symmetries of QCD is the rainbow-ladder truncation in combination with the impulse approximation 1. In BSE kernel µν ( q ) λ a 2 γ µ ⊗ λ a K ( p , p ′ ; k , k ′ ) → −G ℓ ( q 2 ) D free 2 γ ν 2. In gap equation µν ( q ) λ a ν ( k , p ) → G ℓ ( q 2 ) D free Z 1 g 2 D µν ( q )Γ a 2 γ ν R-LT is first term in systematic expansion of q ¯ q scattering kernel K ( p , p ′ ; k , k ′ )

  12. Gluon Propagator DSE and unquenched QCD lattice studies show that the Full gluon propagator µν ( p ) = δ ab G ℓ ( p 2 ) � δ µν − p µ p ν � D ab p 2 p 2 is IR finite , i.e. p 2 → 0 D ab µν ( p ) = finite lim - the gluon has dynamically generated mass in the IR EM Observables in the static limit ( q µ → 0 ) probe gluon propagator for small transversed momenta = ⇒ Point-like vector ⊗ vector contact interaction 4 πα IR g 2 D ab µν ( p ) = δ ab δ µν m 2 G

  13. Contact Interaction Model This implies Non-renormalizable theory Introduce proper-time regularization Λ uv = 1 /τ uv cannot be removed but plays a dynamical role and 1 sets the scale of all dimensioned quantities Λ ir = 1 /τ ir implements confinement by ensuring the absence of 2 quark production tresholds Scale m G , is set in agreement with observables In the static limit q 2 → 0 results "indistinguishable" from any other however sophisticated DSE approach For q 2 � M 2 dressed deviations are expected from other experimental values

  14. Part B: 1 The ρ Meson 1M. P ., C. Y. Seng, M. J. Ramsey-Musolf, C. D. Roberts, S. M. Schmidt and D. J. Wilson, Phys. Rev. C 87 (2013) 015205

  15. The ρ Meson "Per se" from an experimental point of view uninteresting Short lifetime ( ∼ 10 − 24 s ) makes EDM measurements hard (or rather impossible) Simplest system possibly providing EDM and hence perfect prototype particle Results available in QCD sum rules and other techniques Profile I G ( J PC ) = 1 + ( 1 −− ) 1 m = 775 . 49 ± 0 . 34 MeV, 2 Γ = 149 . 1 ± 0 . 8 MeV Primary decay mode ( ∼ 100 % ): ρ → ππ 3

  16. The ρ -Meson in Impulse Approximation Impulse Approximation q k − + k ++ Γ µ Γ α Γ β p ′ p k −− d 4 k � Γ ( u ) � Γ ρ ( u ) � S ( k ++ )Γ ( u ) µ S ( k − + )Γ ρ ( u ) αµβ ∝ ( 2 π ) 4 Tr CD S ( k −− ) α β EDM sources induce CP violating corrections to the q γ q vertex 1 Bethe-Salpeter amplitude 2 Propagator 3

  17. The Magnetic Moment Results for M ( 0 ) in units e / ( 2 m ρ ) DSE - CIM 2 . 11 DSE - RL RGI-improved 2 . 01 DSE - EF parametrisation 2 . 69 LF - CQM 2 . 14 LF - CQM 1 . 92 1 . 8 ± 0 . 3 QCD sum rules point particle 2

  18. The Θ -Term Only CP violating dimension 4 operator Θ g 2 L eff = − i ¯ µν ˜ 32 π 2 G a s G a µν No suppression by heavy scale (strong CP problem) U ( 1 ) A anomaly allows to rotate it into complex mass for evaluation (effective propagator correction) 0 . 7 × 10 − 3 e ¯ DSE Θ / 1 GeV 4 . 4 × 10 − 3 e ¯ QCD sum rules Θ / 1 GeV

  19. The Θ -Term Only CP violating dimension 4 operator Θ g 2 L eff = − i ¯ s µν ˜ 32 π 2 G a G a µν No suppression by heavy scale (strong CP problem) U ( 1 ) A anomaly allows to rotate it into complex mass for evaluation (effective propagator correction) 0 . 7 × 10 − 3 e ¯ Θ / 1 GeV DSE 4 . 4 × 10 − 3 e ¯ QCD sum rules Θ / 1 GeV

  20. The Θ -Term Only CP violating dimension 4 operator Θ g 2 L eff = − i ¯ s µν ˜ 32 π 2 G a G a µν No suppression by heavy scale (strong CP problem) U ( 1 ) A anomaly allows to rotate it into complex mass for evaluation (effective propagator correction) 0 . 7 × 10 − 3 e ¯ Θ / 1 GeV DSE 4 . 4 × 10 − 3 e ¯ QCD sum rules Θ / 1 GeV

  21. The Θ -Term Only CP violating dimension 4 operator Θ g 2 L eff = − i ¯ s µν ˜ 32 π 2 G a G a µν No suppression by heavy scale (strong CP problem) U ( 1 ) A anomaly allows to rotate it into complex mass for evaluation (effective propagator correction) 0 . 7 × 10 − 3 e ¯ Θ / 1 GeV DSE 4 . 4 × 10 − 3 e ¯ QCD sum rules Θ / 1 GeV

  22. The Θ -Term Only CP violating dimension 4 operator Θ g 2 L eff = − i ¯ s µν ˜ 32 π 2 G a G a µν No suppression by heavy scale (strong CP problem) U ( 1 ) A anomaly allows to rotate it into complex mass for evaluation (effective propagator correction) 0 . 7 × 10 − 3 e ¯ Θ / 1 GeV DSE 4 . 4 × 10 − 3 e ¯ QCD sum rules Θ / 1 GeV

  23. The Θ -Term Only CP violating dimension 4 operator Θ g 2 L eff = − i ¯ s µν ˜ 32 π 2 G a G a µν No suppression by heavy scale (strong CP problem) U ( 1 ) A anomaly allows to rotate it into complex mass for evaluation (effective propagator correction) 0 . 7 × 10 − 3 e ¯ Θ / 1 GeV DSE 4 . 4 × 10 − 3 e ¯ QCD sum rules Θ / 1 GeV

  24. The Quark-EDM The intrinsic EDM of a quark itself L eff = − i � d q ¯ q σ µν γ 5 q F µν 2 q = u , d Effective q γ q vertex correction 0 . 79 ( d u − d d ) DSE - CIM DSE 0 . 72 ( d u − d d ) Bag Model 0 . 83 ( d u − d d ) 0 . 51 ( d u − d d ) QCD sum rules Non-relativistic quark model 1 . 00 ( d u − d d )

  25. The Chromo-EDM The Intrinsic Chromo-EDM of a quark itself L eff = − i q 1 � ˜ 2 λ a σ µν γ 5 q G a d q ¯ 2 g s µν q = u , d Effective q γ q vertex correction − 0 . 07 e ˜ d − − 0 . 20 e ˜ DSE - q γ q d + − 0 . 12 e ˜ d − + 0 . 11 e ˜ DSE - BSA d + 1 . 35 e ˜ d − − 0 . 60 e ˜ DSE - Propagator d + 1 . 16 e ˜ d − − 0 . 69 e ˜ DSE d + − 0 . 13 e ˜ QCD sum rules d −

  26. The Chromo-EDM The Intrinsic Chromo-EDM of a quark itself L eff = − i q 1 � ˜ 2 λ a σ µν γ 5 q G a d q ¯ 2 g s µν q = u , d Effective q γ q vertex correction − 0 . 07 e ˜ d − − 0 . 20 e ˜ DSE - q γ q d + − 0 . 12 e ˜ d − + 0 . 11 e ˜ DSE - BSA d + 1 . 35 e ˜ d − − 0 . 60 e ˜ DSE - Propagator d + 1 . 16 e ˜ d − − 0 . 69 e ˜ DSE d + − 0 . 13 e ˜ QCD sum rules d −

  27. The Chromo-EDM The Intrinsic Chromo-EDM of a quark itself L eff = − i q 1 � ˜ 2 λ a σ µν γ 5 q G a d q ¯ 2 g s µν q = u , d Effective q γ q vertex correction − 0 . 07 e ˜ d − − 0 . 20 e ˜ DSE - q γ q d + − 0 . 12 e ˜ d − + 0 . 11 e ˜ DSE - BSA d + 1 . 35 e ˜ d − − 0 . 60 e ˜ DSE - Propagator d + 1 . 16 e ˜ d − − 0 . 69 e ˜ DSE d + − 0 . 13 e ˜ QCD sum rules d −

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend