edms cp odd nucleon correlators qcd sum rules
play

EDMs, CP-odd Nucleon Correlators & QCD Sum Rules Adam Ritz - PowerPoint PPT Presentation

Hadronic Matrix Elements for Probes of CP Violation - ACFI, UMass Amherst - Jan 2015 EDMs, CP-odd Nucleon Correlators & QCD Sum Rules Adam Ritz University of Victoria Based on (older) work with M. Pospelov, see e.g. the review M. Pospelov


  1. Hadronic Matrix Elements for Probes of CP Violation - ACFI, UMass Amherst - Jan 2015 EDMs, CP-odd Nucleon Correlators & QCD Sum Rules Adam Ritz University of Victoria Based on (older) work with M. Pospelov, see e.g. the review M. Pospelov & AR, Ann. Phys. 318, 119 (2005) [hep-ph/0504231] (plus some updates)

  2. Experimental EDM Limits • EDMs are powerful (amplitude-level) probes for new � S (T,P) violating sources, motivated e.g. by baryogenesis. H = − d � E · S • Best current limits from neutrons, para- and dia-magnetic atoms and molecules Neutron EDM |d n | < 3 x 10 -26 e cm [Baker et al. ’06] |d Hg | < 3 x 10 -29 e cm [Griffith et al ’09] Diamagnetic EDMs |d Xe | < 4 x 10 -27 e cm [Rosenberry & Chupp ’01] Δ E ThO / ℇ ext < 3 x 10 -22 e cm [Baron et al. ’13] Paramagnetic EDMs Δ E YbF / ℇ ext < 1.4 x 10 -21 e cm [Hudson et al. ’11] Negligible SM (CKM) background - contribution is (at least) 4-5 orders of magnitude below the current neutron sensitivity, and lower for the atomic EDMs 2

  3. Summary of the bounds log(d [e cm]) Real sensitivity to underlying sources -22 of CP violation depends on significant enhancement and suppression factors -24 ~ d q and d q from the neutron -26 ~ d q from Hg -28 impact of recent order of d e from ThO magnitude improvement in paramagnetic EDM sensitivity -30 The generic sensitivity to new physics -32 follows from taking d f ∝ m f -34 3

  4. Multi-scale calculational scheme CP violation • Model-dependent (e.g. perturbative) • Nucleon matrix elements (focus of QCD scale this meeting), nucleon EDMs, pion- nucleon, nucleon-nucleon couplings nuclear/atomic scale • Nuclear scale, e.g. Schiff moment, magnetic quadrupole Observable • Atomic/Molecular EDM EDMs 4

  5. Multi-scale calculational scheme Significant uncertainties for nucleon, nuclear and CP violation • Model-dependent diagmagnetic EDMs (e.g. perturbative) • Nucleon matrix elements (focus of QCD scale this meeting), nucleon EDMs, pion- nucleon, nucleon-nucleon couplings nuclear/atomic scale • Nuclear scale, e.g. Schiff moment, magnetic quadrupole Observable • Atomic/Molecular EDM EDMs 5

  6. EDM Sensitivity to (short distance) CP-violation Fundamental Energy CP phases TeV θ -term, quark EDMs, semi-leptonic electron EDM CEDMs etc. qqee QCD pion-nucleon π NN Nucleon and NNNN µ semi-leptonic EDMs (n,p) EDM NNee nuclear EDMs of nuclei and ions (deuteron, etc) EDMs of paramagnetic atoms and molecules EDMs of (Tl,YbF, ThO, HfF + ,...) diamagnetic atoms Atoms in traps (Rb,Cs,Fr) atomic (Hg,Xe,Ra,Rn,...) solid state 6

  7. EDM Sensitivity to (short distance) CP-violation Fundamental Energy CP phases TeV θ -term, quark EDMs, semi-leptonic electron EDM CEDMs etc. qqee QCD pion-nucleon π NN Nucleon and NNNN µ semi-leptonic EDMs (n,p) EDM NNee nuclear EDMs of nuclei and ions (deuteron, etc) EDMs of paramagnetic atoms and molecules EDMs of (Tl,YbF, ThO, HfF + ,...) diamagnetic atoms Atoms in traps (Rb,Cs,Fr) atomic (Hg,Xe,Ra,Rn,...) solid state 7

  8. CP-odd operator expansion (at ~1GeV) (Flavor-diagonal) CP-violating operators at ~1GeV [ ➠ hadronic sector c n Λ d − 4 O ( n ) X L e ff = discussed in detail in d Jordy’s talk] n L dim 4 ⊃ ¯ θα s G ˜ G ¯ θ = θ 0 − ArgDet( M u M d ) ≡ θ 0 − θ q NB: (i) Basis at 1 GeV is simpler than at EW scale, after integrating out W,Z,h etc. (ii) Use of QCD dofs assumes that the new physics scale is above 1 GeV) 8

  9. CP-odd operator expansion (at ~1GeV) (Flavor-diagonal) CP-violating operators at ~1GeV c n Λ d − 4 O ( n ) X L e ff = d n v d i ∼ cY i L dim 4 ⊃ ¯ θα s G ˜ G Λ 2 ⇣ ⌘ X X qF σγ 5 q + ˜ d l ¯ L “dim 6” ⊃ d q ¯ d q ¯ qG σγ 5 q lF σγ 5 l + q = u,d,s l = e,µ L dim 6 ⊃ wg 3 s GG ˜ G 9

  10. CP-odd operator expansion (at ~1GeV) (Flavor-diagonal) CP-violating operators at ~1GeV c n Λ d − 4 O ( n ) X L e ff = d n L dim 4 ⊃ ¯ θα s G ˜ G ⇣ ⌘ X X qF σγ 5 q + ˜ d l ¯ L “dim 6” ⊃ d q ¯ d q ¯ qG σγ 5 q lF σγ 5 l + q = u,d,s l = e,µ s GG ˜ ff � ( ¯ f Γ f � ) LL ( ¯ � L dim 6 ⊃ wg 3 C � f Γ f � ) RR G + f,f � , Γ Schematic form of a few special 4-fermion operators, requiring no Higgs insertion - suppressed without new UV sources of LR mixing 10

  11. CP-odd operator expansion (at ~1GeV) (Flavor-diagonal) CP-violating operators at ~1GeV c n Λ d − 4 O ( n ) X L e ff = d n L dim 4 ⊃ ¯ θα s G ˜ G ⇣ ⌘ X X qF σγ 5 q + ˜ d l ¯ L “dim 6” ⊃ d q ¯ d q ¯ qG σγ 5 q lF σγ 5 l + q = u,d,s l = e,µ s GG ˜ ff � ( ¯ f Γ f � ) LL ( ¯ � L dim 6 ⊃ wg 3 C � f Γ f � ) RR G + f,f � , Γ � L “dim 8” ⊃ C qq ¯ q Γ q ¯ q Γ i γ 5 q + C qe ¯ q Γ q ¯ e Γ i γ 5 e + · · · q, Γ v 2 C ij ∼ cY i Y j Λ 4 11

  12. CP-odd operator expansion (at ~1GeV) (Flavor-diagonal) CP-violating operators at ~1GeV c n Λ d − 4 O ( n ) X L e ff = d n L dim 4 ⊃ ¯ θα s G ˜ G ⇣ ⌘ X X qF σγ 5 q + ˜ d l ¯ L “dim 6” ⊃ d q ¯ d q ¯ qG σγ 5 q lF σγ 5 l + q = u,d,s l = e,µ s GG ˜ ff � ( ¯ f Γ f � ) LL ( ¯ � L dim 6 ⊃ wg 3 C � f Γ f � ) RR G + f,f � , Γ � L “dim 8” ⊃ C qq ¯ q Γ q ¯ q Γ i γ 5 q + C qe ¯ q Γ q ¯ e Γ i γ 5 e + · · · q, Γ NB: Relative importance of different operators is very model-dependent, and the expansion can be misleading. E.g. for the SM (and SUSY and 2HDM regimes at large tanbeta), these 4-fermion sources are dominant 12

  13. CP-odd operator expansion (at ~1GeV) (Flavor-diagonal) CP-violating operators at ~1GeV c n Λ d − 4 O ( n ) X L e ff = d n L dim 4 ⊃ ¯ θα s G ˜ G ⇣ ⌘ X X qF σγ 5 q + ˜ d l ¯ L “dim 6” ⊃ d q ¯ d q ¯ qG σγ 5 q lF σγ 5 l + q = u,d,s l = e,µ s GG ˜ ff � ( ¯ f Γ f � ) LL ( ¯ � L dim 6 ⊃ wg 3 C � f Γ f � ) RR G + f,f � , Γ � L “dim 8” ⊃ C qq ¯ q Γ q ¯ q Γ i γ 5 q + C qe ¯ q Γ q ¯ e Γ i γ 5 e + · · · q, Γ 13

  14. CP-odd operator expansion (at ~1GeV) (Flavor-diagonal) CP-violating operators at ~1GeV c n Λ d − 4 O ( n ) X L e ff = d n L dim 4 ⊃ ¯ θα s G ˜ G ⇣ ⌘ X X qF σγ 5 q + ˜ d l ¯ L “dim 6” ⊃ d q ¯ d q ¯ qG σγ 5 q + lF σγ 5 l q = u,d,s l = e,µ s GG ˜ ff � ( ¯ f Γ f � ) LL ( ¯ � L dim 6 ⊃ wg 3 C � f Γ f � ) RR G + f,f � , Γ � L “dim 8” ⊃ C qq ¯ q Γ q ¯ q Γ i γ 5 q + C qe ¯ q Γ q ¯ e Γ i γ 5 e + · · · q, Γ nucleon/nuclear scales g (1) g (0) d ( n,p ) ¯ π NN ¯ π NN ¯ N π 0 N + ¯ NF σγ 5 N + ¯ N σ · π N + (4 − nucleon) + · · · eF σγ 5 e + C (0) ¯ d e ¯ NN ¯ ei γ 5 e + · · · S 14

  15. EFT hierarchy Fundamental Energy CP phases TeV QCD pion-nucleon Nucleon couplings ( ) µ EDMs (n,p) EDM nuclear EDMs of nuclei and ions (deuteron, etc) EDMs of paramagnetic atoms and molecules EDMs of (Tl,YbF, ThO, HfF + ,...) diamagnetic atoms Atoms in traps (Rb,Cs,Fr) atomic (Hg,Xe,Ra,Rn,...) solid state 15

  16. EFT hierarchy focus of the rest of this talk! Fundamental Energy CP phases TeV QCD pion-nucleon Nucleon couplings ( ) µ EDMs (n,p) EDM nuclear EDMs of nuclei and ions (deuteron, etc) EDMs of paramagnetic atoms and molecules EDMs of (Tl,YbF, ThO, HfF + ,...) diamagnetic atoms Atoms in traps (Rb,Cs,Fr) atomic (Hg,Xe,Ra,Rn,...) solid state 16

  17. The QCD scale • Chiral EFT (chiral constraints) [ ➠ Emanuele’s talk] L = L ( π , ( K ) , N, · · · ) = − i N ( d n τ − + d p τ + ) F σγ 5 N − ¯ π NN τ a π a + ¯ g (0) g (1) ¯ π NN π 0 ) N + · · · N (¯ 2 { d N (¯ θ , d q , ˜ d q , w, C ij , . . . ) low energy constants g (0 , 1) π NN (¯ θ , ˜ ¯ d q , C ij , . . . ) [Crewther et al ’79; Hisano & Shimizu ’04; Stetcu et al ’08, de Vries et al ‘11,12; An et al ’12; Guo & Meissner ’12, Bsaisou et al ’14 ] 17

  18. The QCD scale • Chiral EFT (chiral constraints) L = L ( π , ( K ) , N, · · · ) = − i N ( d n τ − + d p τ + ) F σγ 5 N − ¯ π NN τ a π a + ¯ g (0) g (1) ¯ π NN π 0 ) N + · · · N (¯ 2 { d N (¯ θ , d q , ˜ d q , w, C ij , . . . ) low energy constants g (0 , 1) π NN (¯ θ , ˜ ¯ d q , C ij , . . . ) • LEC’s related by IR loops (chiral logs) – still need input to fix counterterms e π NN ln Λ g (0) d n = g π NN ¯ + C ct 4 π 2 m n m π need UV threshold corrections 18

  19. The QCD scale • Chiral EFT (chiral constraints) L = L ( π , ( K ) , N, · · · ) = − i N ( d n τ − + d p τ + ) F σγ 5 N − ¯ π NN τ a π a + ¯ g (0) g (1) ¯ π NN π 0 ) N + · · · N (¯ 2 { d N (¯ θ , d q , ˜ d q , w, C ij , . . . ) low energy constants g (0 , 1) π NN (¯ θ , ˜ ¯ d q , C ij , . . . ) • LEC’s related by IR loops (chiral logs) – still need input to fix counterterms • Simplest option is NDA - m q, av ∼ m 2 π / Λ had Λ had /f π ∼ g s ( µ ) ∼ 4 π ˜ θ q d q d q em q eg s O (1) d n Λ 2 4 π had Λ 2 m q g (0) had ¯ ∼ O ( α ) π NN f π f π 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend