edms of stable atoms and molecules
play

EDMs of stable atoms and molecules outline Introduction EDM - PowerPoint PPT Presentation

W.Heil EDMs of stable atoms and molecules outline Introduction EDM sensitivity Recent progress in -EDMs paramagnetic atoms/molecules -EDMs diamagnetic atoms Conclusion and outlook Solvay workshop Beyond the Standard model


  1. W.Heil EDMs of stable atoms and molecules outline • Introduction • EDM sensitivity • Recent progress in -EDMs paramagnetic atoms/molecules -EDMs diamagnetic atoms • Conclusion and outlook Solvay workshop „ Beyond the Standard model with Neutrinos and Nuclear Physics“ Brussels, Nov. 29th – Dec. 1st, 2017

  2. Our world is composed of matter ... and not antimatter n   400/cm 3 (CMB) n b  0.2 protons/m 3  n n      b 10 b 6 10 n  SM prediction based on observed flavor-changing CP-violation (CKM-matrix)  n n    10  b 18 b n 

  3. SM CP-odd phases  10    10 ~ O ( 1 ) CKM QCD constrained experimentally (d n , d Hg ) explains CP in K and B meson (strong CP problem) mixing and decays Electric dipole moments (EDMs) of elementary particles (flavor-diagonal CP ) EDM measurement free of SM background  10     38 32 34 d e e cm d n ~ 10 10 e cm fourth order Khriplovich, Zhitnitsky 86 electroweak

  4. Fundamental theory TeV Wilson coefficients QCD Low energy d , n d parameters p Nucleus 3 d , t , He level nuclea r EDMs of paramagnetic EDMs of Atom/molecule atoms and molecules diamagnetic atoms level atomic (Tl,YbF,ThO ,…) (Hg,Xe,Ra.Rn,..) Atoms in traps (Rb,Cs,Fr) Solid state

  5. Atomic EDM + + 𝐹 𝑓𝑦𝑢 𝐹 𝑗𝑜𝑢 Ԧ 𝑒 𝐹𝐸𝑁 - - 𝐹 𝑓𝑔𝑔 = 𝐹 𝑓𝑦𝑢 + 𝐹 𝑗𝑜𝑢 = 𝜁 ⋅ 𝐹 𝑓𝑦𝑢 = 0 complete shielding: ⇒ Δ𝐹 𝐹𝐸𝑁 = − Ԧ 𝑒 𝐹𝐸𝑁 ⋅ 𝐹 𝑓𝑔𝑔 = − Ԧ 𝑒 𝐹𝐸𝑁 ⋅ 𝜁 ⋅ 𝐹 𝑓𝑦𝑢 = 0 L.I.Schiff ( PR 132 2194,1963) : EDM of a system of non-relativistic charged point particles that interact electrostatically can not be measured : 𝜁 = 0

  6. Relativistic violation of Schiff screening (requires the use of relativistic electron radial wavefunctions) Paramagnetic EDMs – „Schiff enhancement “ Atoms Polar molecules

  7. Finite size violation of Schiff screening Diamagnetic EDMs – „Schiff suppression “ For a finite nucleus, the charge and EDM have different spatial distributions S- Schiff moment: Schiff moment is dominant CP-odd N-N interaction for large atoms   S     17   d k 10 e cm ( k Hg ~ -3 ) A A 3   e fm (low energy parameters)    2  2 3 d ~ 10 Z R / R d ~ O ( 10 ) d A N A nuc nuc  Nuclear deformation can enhance heavy atom EDMs (e.g., 225Ra, 223Rn )

  8.  Heavy atoms (relativistic treatment) + finite size:   0  d e  0  d atom  0 ~ Z 3  2 d e  P,T-odd eN interaction Tensor-Pseudotensor ~Z 2 G F C T ~Z 3 G F C S Scalar- Pseudoscalar  Nuclear EDM – finite size Schiff moment induced by P,T-odd N-N interaction ~10 -25  [ecm] 𝜃 𝑒 𝑜 , 𝑒 𝑞 , ҧ 𝑕 0 , ҧ 𝑕 1 , ҧ 𝑕 2  General finding: ഥ Θ 𝑅𝐷𝐸 Paramagnetic EDMs: „Schiff enhancement “ (  >> 1) Diamagnetic EDMs: „Schiff suppression “ (  << 1)  Diamagnetic atoms: Phys. Rep. 397 (04) 63; Phys. Rev. A 66 (02) 012111. 𝑒( 129 𝑌𝑓) = 10 −3 𝑒 𝑓 + 5.2𝑦10 −21 𝐷 𝑈 + 5.6𝑦10 −23 𝐷 𝑇 + 6.7𝑦10 −26 𝜃 ≈ 6.7𝑦10 −26 𝜃

  9. EDM precision experiments (upper limits) Xe 

  10. EDM search: Ramsey type phase measurements   ො 𝑭, 𝑪 𝑭, 𝑪 𝒜 𝒜 ො EDM sensitivity (FOM)      shift dS / d           E 2 d ( E ) N / resolution noise   1    d   ˆ ˆ      x x E SNR ext   ˆ               x 2 B 2 d E / B E noise dS  N  Signal d 𝑂  Precession phase magnetic EDM phase bias phase (  B ) shift (  E )

  11. EDMs of paramagnetic atoms and molecules (Tl, YbF, ThO , …) Interaction energy -d e 𝜁 E •  𝜁 d e  E amplification -585 for Tl 𝜁 atom containing electron electric field 𝜻  10 9 for ThO (E lab  100 V/cm)

  12. 2. advantage of YbF , ThO : No coupling   v  E to motional magnetic field electron spin is coupled to internuclear axis and internuclear axis is coupled to E    v  E  = 0 no motional systematic error

  13. Experimental setup: general scheme B E beam of atoms or molecules state readout state preparation Spin precession Observable: phase difference = 2 (m B B ± d e 𝜁 E)  / ħ ( ) H ThO:  H ; J 1 metastable state (ground rotational level; J=1), lifetime ~ 2ms M = -1 M = 0 M = +1

  14.  0 E eff N = -1 E lab H N = +1  E 0 eff M = -1 M = 0 M = +1

  15.  0 E eff    B N = -1    E lab B B H    B N = +1    B  E 0 eff M = -1 M = 0 M = +1

  16.  d  e E  0 E eff eff    B N = -1    E lab B  d  e E B eff H    B  d  e E N = +1  d  eff    e E B eff  E 0 eff M = -1 M = 0 M = +1

  17. C P = +1 P = -1 Preparation/Readout Lasers  d  e E  0 E eff eff    B N = -1    E lab B  d  e E B eff H    B  d  e E N = +1  d  eff    e E B eff  E 0 eff M = -1 M = 0 M = +1

  18.     N   N   N         ˆ i i x , , e M 1 , e M 1 , / 2   N          g B d E / B e eff

  19. Results Science 343 (2014) 269                       3 3 2 . 6 4 . 8 3 . 2 10 [ / ] ( ) / 2 . 6 4 . 8 3 . 2 10 [ rad rad / s s ] ( d d E E W C ) / stat sys e eff stat sys e eff S S using E eff = 84 GV/c m , W S (molecule-specific constant) Phys.Rev. A 84 , 052108 (2011) C S = 0             29 29 d 2 . 1 3 . 7 2 . 5 10 ecm d 8 . 7 10 ecm ( 90 % CL ) e stat sys e d e = 0    9 C S 5 . 9 10 ( 90 % CL )

  20. 199 Hg EDM experiment PRL 116 , 161601 (2016) 19 cm use of buffer gases: no EDM false effects due to geometric phases systematic effects in units of 10 -32 ecm  E 10 kV / cm

  21. Effective data taking: 252 days

  22. Results: Hg-EDM    30 d Hg 7 . 4 10 ecm (95% CL) Limits on CP-violating observables from 199 Hg EDM limit

  23. Courtesy of B. Santra

  24. Towards long spin-coherence times (T 2 *) SQUID 15 detector 10 5 B SQUID [pT] 0 -5 Motional narrowing regime:  diff <<1/(  B) -10 -15 (G. D. Cates, et al., Phys. Rev. A 37, 2877) 0,0 0,2 0,4 time [s] 1 1 1   12 * T T T 8 2 1 2, field      4 2   1 4 R 4 2 2 2 2   h B SQUID [pT]             4   B B 2 B R p B * T He 60 . 2 0 . 1   1 , x 1 , y 1 , z 0 T 175 D 2 , 2, field -4 * Long T : -8  2  100 h T  1 p ~ mbar , R ~ 5 cm , B ~ T -12 1 0 2 4 6 8 10 time [h]

  25. Comagnetometry to get rid of magnetic field drifts 406.68 drift ~ 1pT/h B [nT] 406.67   10 -5 Hz/h 406.66 0 5 1 0 1 5 2 0 t [h] B 0 3 He (13 Hz) 129 Xe (4,7 Hz)                  He 0 He const .  L , He  L , Xe He Xe Xe Xe

  26. Subtraction of deterministic phase shifts I. Earth‘s rotation  =  He -  He /  Xe   Xe  rem =  -  Earth II. Ramsey-Bloch-Siegert shift He   * t / T self shift ~ S e 2 0   Xe 2 cross-talk ~   * t / T S e 2 0  *  *  *  *               t / T t / T 2 t / T 2 t / T ( t ) c a t a e a e b e b e 2 , He 2 , Xe 2 , He 2 , Xe Earth He Xe He Xe EDM

  27. Measurement sensitivity: 129 Xe electric dipole moment                h h 4 E d   Xe E E B o Rosenberry and Chupp, PRL 86,22 (2001)  E o  E   E         27 0 . 7 3 . 3 0 . 1 10 ecm d Xe Observable: weighted frequency difference                   He , EDM Xe , EDM Xe , EDM ( ) ( )     He Xe He Xe                   He , EDM Xe , EDM Xe , EDM ( ) ( )     He Xe He Xe   h   4 d sensitivity limit:      Xe E He Xe

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend