connection between g 2 edms clfv and lhc
play

Connection between g 2, EDMs, CLFV and LHC Paride Paradisi - PowerPoint PPT Presentation

Connection between g 2, EDMs, CLFV and LHC Paride Paradisi University of Padua EPS 2015 10-15 August 2015 Rio de Janeiro, Brazil Paride Paradisi (University of Padua) Connection between g 2, EDMs, CLFV and LHC EPS 2015 1 / 21 Open


  1. Connection between g − 2, EDMs, CLFV and LHC Paride Paradisi University of Padua EPS 2015 10-15 August 2015 Rio de Janeiro, Brazil Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 1 / 21

  2. Open questions • The origin of flavour is still, to a large extent, a mystery. The most important open questions can be summarized as follow: ◮ Which is the organizing principle behind the observed pattern of fermion masses and mixing angles? ◮ Are there extra sources of flavour symmetry breaking beside the SM Yukawa couplings which are relevant at the TeV scale? • Related important questions are: ◮ Which is the role of flavor physics in the LHC era? ◮ Do we expect to understand the (SM and NP) flavor puzzles through the synergy and interplay of flavor physics and the LHC? Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 2 / 21

  3. NP search strategies • High-energy frontier: A unique effort to determine the NP scale • High-intensity frontier (flavor physics): A collective effort to determine the flavor structure of NP Where to look for New Physics at the low energy? • Processes very suppressed or even forbidden in the SM ◮ FCNC processes ( µ → e γ , µ → eee , µ → e in N, τ → µγ , B 0 s , d → µ + µ − ...) ◮ CPV effects in the electron/neutron EDMs, d e , n ... ◮ FCNC & CPV in B s , d & D decay/mixing amplitudes • Processes predicted with high precision in the SM a exp ◮ EWPO as ( g − 2 ) µ, e : − a SM ≈ ( 3 ± 1 ) × 10 − 9 , a discrepancy at 3 σ ! µ µ ◮ LU in R e /µ = Γ( M → e ν ) / Γ( M → µν ) with M = π, K M Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 3 / 21

  4. Experimental status LFV process Experiment Future limits Year (expected) O ( 10 − 14 ) BR( µ → e γ ) MEG ∼ 2017 O ( 10 − 15 ) Project X > 2021 O ( 10 − 15 ) BR( µ → eee ) Mu3e ∼ 2017 O ( 10 − 16 ) Mu3e > 2017 O ( 10 − 16 ) MUSIC ∼ 2017 O ( 10 − 17 ) Project X > 2021 O ( 10 − 17 ) CR( µ → e ) COMET ∼ 2017 O ( 10 − 17 ) Mu2e ∼ 2020 O ( 10 − 18 ) PRISM/PRIME ∼ 2020 O ( 10 − 19 ) Project X > 2021 O ( 10 − 8 ) BR( τ → µγ ) Belle II > 2020 O ( 10 − 10 ) BR( τ → µµµ ) Belle II > 2020 O ( 10 − 9 ) BR( τ → e γ ) Belle II > 2020 O ( 10 − 10 ) BR( τ → µµµ ) Belle II > 2020 Table: Future sensitivities of next-generation experiments. Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 4 / 21

  5. The NP “scale” ⇒ Λ Planck ∼ 10 18 − 19 ●❡❱ • Gravity = ⇒ Λ see − saw � 10 15 ●❡❱ • Neutrino masses = • BAU : evidence of CPV beyond SM ◮ Electroweak Baryogenesis = ⇒ Λ NP � ❚❡❱ ⇒ Λ see − saw � 10 15 ●❡❱ ◮ Leptogenesis = • Hierarchy problem : = ⇒ Λ NP � ❚❡❱ • Dark Matter = ⇒ Λ NP � ❚❡❱ SM = effective theory at the EW scale c ( d ) X ij O ( d ) L ❡✛ = L ❙▼ + ij Λ d − 4 NP d ≥ 5 y ij • L d = 5 = Λ s❡❡ − s❛✇ L i L j φφ , ν ❡✛ BR ( ℓ i → ℓ j γ ) ∼ v 4 • L d = 6 generates FCNC operators Λ 4 ❡✛ NP Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 5 / 21

  6. Hierarchy see-saw Hierarchy see-saw • Hierarchy problem : Λ NP � ❚❡❱ • SM Yukawas : M W � Λ NP � M P • Flavor problem : Λ NP ≫ ❚❡❱ Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 6 / 21

  7. Why LFV is interesting? • Neutrino Oscillation ⇒ m ν i � = m ν j ⇒ LFV v 2 M R ∼ eV ⇒ M R ∼ 10 14 − 16 • see-saw : m ν ∼ • LFV transitions like µ → e γ @ 1 loop with exchange of ◮ W and ν in the SM with Λ NP ≡ M R ≡ Λ see − saw Br ( µ → e γ ) ∼ v 4 ≤ 10 − 50 GIM M 4 R ◮ If Λ NP ≪ Λ see − saw ( Λ NP ≡ m susy in the MSSM) v 4 Br ( µ → e γ ) ∼ Λ 4 NP ⇓ • LFV generally detectable in (multi) TeV scale NP scenarios like the MSSM, .... Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 7 / 21

  8. The NP “scale” vs. LFV Calibbi @ IFAE2014 Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 8 / 21

  9. SUSY Flavour after the Higgs discovery � � � 3 TeV , � m g � m B � � � � m W � � � 10 TeV 30 neutron Kaon EDM mixing Μ� 3e 10 tan Β . v n o c e � Μ electron EDM 3 Γ e � M h � 125.5 � 1 GeV Μ charm mixing 1 30 Μ� e conv. neutron M D EDM E n o r t c e 10 l e Kaon tan Β mixing 3 Γ e M h � 125.5 � 1 GeV � Μ Μ� 3e charm mixing 1 10 2 10 3 10 4 10 5 10 � � m l � � � Μ � � TeV � m q Low energy constraints fixing ( δ A ) ij = 0 . 3. The upper (lower) plot gives the reach of current (projected future) experimental results [Altmannshofer, Harnik, & Zupan, ’13] Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 9 / 21

  10. SM vs. NP flavor problems • Can the SM and NP flavour problems have a common explanation? 10 � 6 10 � 4 0.01 1 Y i Μ ,s e u d c b t Τ V CKM ∼ � � � � � � � � � GeV 10 � 4 0.01 1 100 • Froggat-Nielsen ’79: Hierarchies from SSB of a Flavour Symmetry ǫ = � φ � M ≪ 1 ⇒ Y ij ∝ ǫ ( a i + b j ) ... • Flavor protection from flavor models: [Lalak, Pokorski & Ross ’10] U ( 1 ) 2 Operator U ( 1 ) SU ( 3 ) ▼❋❱ ( Q L X Q λ 5 λ 3 λ 5 LL Q L ) 12 λ ( D R X D λ 11 λ 3 ( y d y s ) × λ 5 RR D R ) 12 λ ( Q L X D λ 4 λ 9 λ 3 y s × λ 5 LR D R ) 12 • Is this flavor protection enough? • Can we disentangle flavour models through flavour physics? Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 10 / 21

  11. The New Physics CP problem • Why CP violation? Motivation: ◮ Baryogenesis requires extra sources of CPV ◮ The QCD θ -term L CP = θ α s 8 π G ˜ G is a CPV source beyond the CKM ◮ Most UV completion of the SM, e.g. the MSSM, have many CPV sources ◮ However, TeV scale NP with O ( 1 ) CPV phases generally leads to EDMs many orders of magnitude above the current limits ⇒ the New Physics CP problem. • How to solve the New Physics CP problem? ◮ Decoupling some NP particles in the loop generating the EDMs (e.g. hierarchical sfermions, split SUSY, 2HDM limit...) ◮ Generating CPV phases radiatively φ f CP ∼ α w / 4 π ∼ 10 − 3 ◮ Generating CPV phases via small flavour mixing angles φ f CP ∼ δ fj δ fj with f = e , u , d : maybe the suppression of FCNC processes and EDMs have a common origin? Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 11 / 21

  12. Not only µ → e γ ... • LFV operators @ dim-6 1 O dim − 6 + . . . . L ❡✛ = L ❙▼ + Λ 2 LFV O ❞✐♠ − ✻ ∋ µ R σ µν H e L F µν , (¯ µ L γ µ e L ) ` ¯ f L γ µ f L ` ¯ ¯ ´ , (¯ µ R e L ) ´ , f = e , u , d f R f L • the dipole-operator leads to ℓ → ℓ ′ γ while 4-fermion operators generate processes like ℓ i → ℓ j ¯ ℓ k ℓ k and µ → e conversion in Nuclei. • When the dipole-operator is dominant: « ❇❘ ( ℓ i → ℓ j γ ) log m 2 ❇❘ ( ℓ i → ℓ j ℓ k ¯ ℓ k ) α el „ ℓ i ≃ − 3 ν j ν i ) , ❇❘ ( ℓ i → ℓ j ¯ ν j ν i ) 3 π m 2 ❇❘ ( ℓ i → ℓ j ¯ ℓ k ❈❘ ( µ → e in N ) ≃ α ❡♠ × ❇❘ ( µ → e γ ) . • ❇❘ ( µ → e γ ) ∼ 5 × 10 − 13 implies ❇❘ ( µ → 3e ) ❇❘ ( µ → e γ ) ≈ ❈❘ ( µ → e in N ) ≈ 3 × 10 − 15 5 × 10 − 13 3 × 10 − 15 • µ + N → e + N on different N discriminates the operator at work [Okada et al. 2004] . • An angular analysis for µ → eee can test operator which is at work. Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 12 / 21

  13. Pattern of LFV in NP models • Ratios like Br ( µ → e γ ) / Br ( τ → µγ ) probe the NP flavor structure • Ratios like Br ( µ → e γ ) / Br ( µ → eee ) probe the NP operator at work ratio LHT MSSM SM4 Br ( µ → eee ) ∼ 2 · 10 − 3 0.02. . . 1 0 . 06 . . . 2 . 2 Br ( µ → e γ ) Br ( τ → eee ) ∼ 1 · 10 − 2 0.04. . . 0.4 0 . 07 . . . 2 . 2 Br ( τ → e γ ) Br ( τ → µµµ ) ∼ 2 · 10 − 3 0.04. . . 0.4 0 . 06 . . . 2 . 2 Br ( τ → µγ ) Br ( τ → e µµ ) ∼ 2 · 10 − 3 0.04. . . 0.3 0 . 03 . . . 1 . 3 Br ( τ → e γ ) Br ( τ → µ ee ) ∼ 1 · 10 − 2 0.04. . . 0.3 0 . 04 . . . 1 . 4 Br ( τ → µγ ) Br ( τ → eee ) ∼ 5 1 . 5 . . . 2 . 3 0.8. . . 2 Br ( τ → e µµ ) Br ( τ → µµµ ) 0.7. . . 1.6 ∼ 0 . 2 1 . 4 . . . 1 . 7 Br ( τ → µ ee ) 10 − 3 . . . 10 2 10 − 12 . . . 26 ❘ ( µ Ti → e Ti ) ∼ 5 · 10 − 3 Br ( µ → e γ ) [Buras et al., ’07, ’10] Paride Paradisi (University of Padua) Connection between g − 2, EDMs, CLFV and LHC EPS 2015 13 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend