a 10 bit linearity current controlled ring oscillator
play

A 10-bit Linearity Current-Controlled Ring Oscillator with Rolling - PowerPoint PPT Presentation

10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 1/19 A 10-bit Linearity Current-Controlled Ring Oscillator with Rolling Regulation for Smart Sensing M.Dei 1 , J.Sacristn 1 , E.Marig 2


  1. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 1/19 A 10-bit Linearity Current-Controlled Ring Oscillator with Rolling Regulation for Smart Sensing M.Dei 1 , J.Sacristán 1 , E.Marigó 2 , M.Soundara 2 ,L.Terés 1,3 and F.Serra-Graells 1,3 paco.serra@imb-cnm.csic.es 1 Instituto de Microelectrónica de Barcelona, IMB-CNM(CSIC), Spain 2 Silterra Malaysia Sdn. Bhd., Malaysia 3 Universitat Autònoma de Barcelona, Spain May 2017 M. Dei et al. IEEE ISCAS 2017

  2. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 2/19 1 Introduction 2 CCRO Non-Linearity Issues 3 Rolling Regulation Proposal 5 Design Example in 0.18µm CMOS Technology 6 Conclusions M. Dei et al. IEEE ISCAS 2017

  3. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 3/19 1 Introduction 2 CCRO Non-Linearity Issues 3 Rolling Regulation Proposal 5 Design Example in 0.18µm CMOS Technology 6 Conclusions M. Dei et al. IEEE ISCAS 2017

  4. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 4/19 Introduction Time-domain processing for low-voltage digital-like ADCs Current-controlled ring oscillator ( CCRO ) to interface with current-mode sensors (e.g. optical, chemical) Coarse / fi ne architectures for low-power operation M. Dei et al. IEEE ISCAS 2017

  5. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 5/19 Introduction Time-domain processing for low-voltage digital-like ADCs Current-controlled ring oscillator ( CCRO ) to interface with current-mode sensors (e.g. optical, chemical) Coarse / fi ne architectures for low-power operation Classic current-starving circuit implementation Current steering to improve uniformity of fi ne quantization Signal dependency of CCRO rail voltage (V OSC ) causes I-to-F non-linearity M. Dei et al. IEEE ISCAS 2017

  6. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 6/19 1 Introduction 2 CCRO Non-Linearity Issues 3 Rolling Regulation Proposal 5 Design Example in 0.18µm CMOS Technology 6 Conclusions M. Dei et al. IEEE ISCAS 2017

  7. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 7/19 CCRO Non-Linearity Issues Di ff erential latch (M1,2) with symmetrical load capacitance (C stage ) M. Dei et al. IEEE ISCAS 2017

  8. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 8/19 CCRO Non-Linearity Issues Di ff erential latch (M1,2) with symmetrical load capacitance (C stage ) PMOS transistors de fi ne rail voltage : EKV model in strong inversion forward saturation M. Dei et al. IEEE ISCAS 2017

  9. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 9/19 CCRO Non-Linearity Issues 10 9 Di ff erential latch (M1,2) with symmetrical load 8 capacitance (C stage ) 7 6 5 4 3 2 PMOS transistors de fi ne rail voltage : 1 0 0 1 2 3 4 5 6 7 8 9 10 Strong non-linearities for high-current full scale or low-voltage operation M. Dei et al. IEEE ISCAS 2017

  10. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 10/19 1 Introduction 2 CCRO Non-Linearity Issues 3 Rolling Regulation Proposal 5 Design Example in 0.18µm CMOS Technology 6 Conclusions M. Dei et al. IEEE ISCAS 2017

  11. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 11/19 CCRO with Rolling Regulation Series transistor ( M3 ) to regulate rail voltage independently from signal current Second generation current conveyor ( CCII+ ) as common control Rail voltage regulation + signal current steering Control of M3 transistors is ROLLING along the ring like I sens M. Dei et al. IEEE ISCAS 2017

  12. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 12/19 CMOS Circuit Implementation 3-stage CCII+ circuit: + X-branch to supply low input impedance and to sense error current + Y-branch to bias M4 for any PVT condition so V osc =V ref when I err =0 + Z-branch to apply negative-feedback control using error current M. Dei et al. IEEE ISCAS 2017

  13. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 13/19 CMOS Circuit Implementation 3-stage CCII+ circuit: + X-branch to supply low input impedance and to sense error current dominant pole + Y-branch to bias M4 for any PVT condition so V osc =V ref when I err =0 + Z-branch to apply negative-feedback control using error current Better stability compared to OpAmp-based solutions: Rail-voltage low sensitivity respect to signal current M. Dei et al. IEEE ISCAS 2017

  14. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 14/19 1 Introduction 2 CCRO Non-Linearity Issues 3 Rolling Regulation Proposal 5 Design Example in 0.18µm CMOS Technology 6 Conclusions M. Dei et al. IEEE ISCAS 2017

  15. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 15/19 Application Example MEMS temperature monitoring CMOS PTAT reference operating in weak inversion as temperature sensor 10-bit 100-kS/s ADC speci fi cations Design parameters: + 5-bit / 5-bit coarse/ fi ne quantization splitting + V osc = 1.4V C stage = 20fF I ptat = 5µA at 300K f osc < 4MHz M. Dei et al. IEEE ISCAS 2017

  16. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 16/19 Application Example 3.6 MEMS temperature monitoring 3.4 Frequency [MHz] 3.2 CMOS PTAT reference operating in weak inversion 3 as temperature sensor 10-bit linearity for the 2.8 125-C temperature span 10-bit 100-kS/s 2.6 ADC speci fi cations 1 Design parameters: 0.75 + 5-bit / 5-bit coarse/ fi ne 0.5 quantization splitting 0.25 + V osc = 1.4V DNL [LSB] 0 C stage = 20fF I ptat = 5µA at 300K − 0.25 f osc < 4MHz none digital calibration − 0.5 nor post-compensation technique required − 0.75 70-µW (at 1.8-V) power consumption − 1 − 40 − 30 − 20 − 10 0 10 20 30 40 50 60 70 80 90 Temperature [C] M. Dei et al. IEEE ISCAS 2017

  17. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 17/19 Application Example MEMS temperature monitoring 250µm x 200µm (0.05mm 2 ) CMOS PTAT reference operating in weak inversion as temperature sensor 10-bit 100-kS/s ADC speci fi cations Design parameters: + 5-bit / 5-bit coarse/ fi ne quantization splitting + V osc = 1.4V C stage = 20fF I ptat = 5µA at 300K f osc < 4MHz 70-µW (at 1.8-V) ...currently being integrated in power consumption 0.18-µm 1P6M CMOS technology. M. Dei et al. IEEE ISCAS 2017

  18. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 18/19 1 Introduction 2 CCRO Non-Linearity Issues 3 Rolling Regulation Proposal 5 Design Example in 0.18µm CMOS Technology 6 Conclusions M. Dei et al. IEEE ISCAS 2017

  19. 10-bit Linearity CCRO with Rolling Regulation Intro CCRO Rolling-Regulation Example Conclusions 19/19 Conclusions A highly linear I-to-F current-steering CCRO has been presented for ADC Based on rail-voltage distributed regulation concept Usage of current conveyors to improve loop stability 10-bit 100-kS/s ADC example in 0.18-µm 1P6M CMOS technology Performance achieved without digital calibration nor post-compensation Thanks for your attention! Partially funded by Silterra Malaysia Sdn. Bhd. and supported by CSIC-201650E019 and 2014-SGR-1452 M. Dei et al. IEEE ISCAS 2017

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend