plant tuning a robust lyapunov approach
play

Plant tuning: a robust Lyapunov approach Franco Blanchini 1 , - PowerPoint PPT Presentation

Plant tuning: a robust Lyapunov approach Franco Blanchini 1 , Gianfranco Fenu 2 , Giulia Giordano 3 , Felice Andrea Pellegrino 2 1 Dipartimento di Scienze Matematiche, Informatiche e Fisiche University of Udine, Italy; 2 Dipartimento di Ingegneria


  1. Plant tuning: a robust Lyapunov approach Franco Blanchini 1 , Gianfranco Fenu 2 , Giulia Giordano 3 , Felice Andrea Pellegrino 2 1 Dipartimento di Scienze Matematiche, Informatiche e Fisiche University of Udine, Italy; 2 Dipartimento di Ingegneria e Architettura University of Trieste, Italy 3 Linnaeus Center and Department of Automatic Control University of Lund, Sweden January 10, 2017 pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  2. Uumidity-temperature regulation T ω h I T = φ ( I , ω ) , ψ ( I , ω ) , h = pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  3. Uumidity-temperature regulation We know that pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  4. Uumidity-temperature regulation We know that the temperature T is a decreasing function of the fan speed ω and an increasing function of the current I ; pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  5. Uumidity-temperature regulation We know that the temperature T is a decreasing function of the fan speed ω and an increasing function of the current I ; the relative humidity h is a decreasing function of both the fan speed ω and the current I . pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  6. Uumidity-temperature regulation We know that the temperature T is a decreasing function of the fan speed ω and an increasing function of the current I ; the relative humidity h is a decreasing function of both the fan speed ω and the current I . Available information: � + m 1 � ∂ T ∂ T � � − m 2 ∂ I ∂ω ∈ , ∂ h ∂ h − m 3 − m 4 ∂ I ∂ω where m 1 , m 2 , m 3 , m 4 ∈ [ ε , µ ]. pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  7. Plant tuning without a model u y g TUNER pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  8. Plant tuning without a model u y g TUNER � � r r ∂ g ∑ ∑ α i M i , α i = 1 , α i ≥ 0 ∂ u ∈ M = M = i =1 i =1 pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  9. Problem formulation pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  10. Problem formulation Problem Given the static plant y = g ( u ) , where g : R q → R p , p ≤ q, assume that, for some (unknown) ¯ u, 0 = g (¯ u ) . and that the following inclusion holds: � ∂ g � G u . = ∈ M . ∂ u where M is a polytopic set. Find a dynamic algorithm such that y ( t ) → 0 and u ( t ) → ¯ u pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  11. Main result pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  12. Main result Assumption Robust non–singularity. Any matrix in the polytope M is right invertible. pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  13. Main result Assumption Robust non–singularity. Any matrix in the polytope M is right invertible. Theorem Under Assumption 2, Problem 1 can be solved with a control scheme of the form u ( t ) ˙ = v ( t ) , v ( t ) = Φ( y ( t )) , with added input variable v ( t ) . pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  14. A no–solution Observation The dynamics of the output y can be described by y = G u ˙ ˙ u = G u v pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  15. A no–solution Observation The dynamics of the output y can be described by y = G u ˙ ˙ u = G u v This would be a driftless system if G u were known. pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  16. A no–solution Observation The dynamics of the output y can be described by y = G u ˙ ˙ u = G u v This would be a driftless system if G u were known. Take v = − G − 1 u y, then y = − y ˙ and y ( t ) → 0 exponentially (Newton’s method). pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  17. A no–solution Observation The dynamics of the output y can be described by y = G u ˙ ˙ u = G u v This would be a driftless system if G u were known. Take v = − G − 1 u y, then y = − y ˙ and y ( t ) → 0 exponentially (Newton’s method). u ( t ) converges to ¯ u such that G (¯ u ) = 0 . pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  18. Sketch of proof p = q pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  19. Sketch of proof p = q Cheating and regretting .... pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  20. Sketch of proof p = q Cheating and regretting .... Consider the Lyapunov like function V ( y ) = 1 2 y ⊤ y , V = y ⊤ ˙ ˙ y = y ⊤ G u ˙ u = y ⊤ G u v . pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  21. Sketch of proof p = q Cheating and regretting .... Consider the Lyapunov like function V ( y ) = 1 2 y ⊤ y , V = y ⊤ ˙ ˙ y = y ⊤ G u ˙ u = y ⊤ G u v . Take the “fake” control v = − γ ( y ) G − 1 u y V = − γ ( y ) y ⊤ y < 0 , ˙ for y � = 0 ( ∗ ) pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  22. Sketch of proof p = q Cheating and regretting .... Consider the Lyapunov like function V ( y ) = 1 2 y ⊤ y , V = y ⊤ ˙ ˙ y = y ⊤ G u ˙ u = y ⊤ G u v . Take the “fake” control v = − γ ( y ) G − 1 u y V = − γ ( y ) y ⊤ y < 0 , ˙ for y � = 0 ( ∗ ) Claim There exists � v ( y , G u ) � = � γ ( y ) G − 1 u y � ≤ ξ such that (*) holds. pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  23. Sketch of proof p = q pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  24. Sketch of proof p = q Game theoretic–interpretation: (S. Gutman, G. Leitmann 1976) pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  25. Sketch of proof p = q Game theoretic–interpretation: (S. Gutman, G. Leitmann 1976) Good player (control) : chooses � v � ≤ ξ to minimize ˙ V ; pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  26. Sketch of proof p = q Game theoretic–interpretation: (S. Gutman, G. Leitmann 1976) Good player (control) : chooses � v � ≤ ξ to minimize ˙ V ; Bad player (misfortune) : chooses G u ∈ M to maximize ˙ V . pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  27. Sketch of proof p = q Game theoretic–interpretation: (S. Gutman, G. Leitmann 1976) Good player (control) : chooses � v � ≤ ξ to minimize ˙ V ; Bad player (misfortune) : chooses G u ∈ M to maximize ˙ V . µ + = min G u ∈ M y ⊤ G u v � v �≤ ξ max pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  28. Sketch of proof p = q Game theoretic–interpretation: (S. Gutman, G. Leitmann 1976) Good player (control) : chooses � v � ≤ ξ to minimize ˙ V ; Bad player (misfortune) : chooses G u ∈ M to maximize ˙ V . µ + = min G u ∈ M y ⊤ G u v � v �≤ ξ max µ − = max � v �≤ ξ y ⊤ G u v G u ∈ M min pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  29. Sketch of proof p = q Game theoretic–interpretation: (S. Gutman, G. Leitmann 1976) Good player (control) : chooses � v � ≤ ξ to minimize ˙ V ; Bad player (misfortune) : chooses G u ∈ M to maximize ˙ V . µ + = min G u ∈ M y ⊤ G u v � v �≤ ξ max µ − = max � v �≤ ξ y ⊤ G u v G u ∈ M min This game has a saddle–point µ − = µ + = y ⊤ M ∗ ( y ) v ∗ ( y ) pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  30. Sketch of proof p = q Game theoretic–interpretation: (S. Gutman, G. Leitmann 1976) Good player (control) : chooses � v � ≤ ξ to minimize ˙ V ; Bad player (misfortune) : chooses G u ∈ M to maximize ˙ V . µ + = min G u ∈ M y ⊤ G u v � v �≤ ξ max µ − = max � v �≤ ξ y ⊤ G u v G u ∈ M min This game has a saddle–point µ − = µ + = y ⊤ M ∗ ( y ) v ∗ ( y ) Then v = Φ( y ) = v ∗ ( y ) pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  31. Facts pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

  32. Facts The computation of v ∗ requires solving a convex optimization problem on–line with domain M . pollo F. Blanchini, G. Fenu, G. Giordano, F.A. Pellegrino Plant tuning: a robust Lyapunov approach

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend