nonlinear infinite horizon control using generalized
play

Nonlinear infinite-horizon control using generalized Lyapunov - PowerPoint PPT Presentation

INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Nonlinear infinite-horizon control using generalized Lyapunov equations Tobias Breiten Karl Kunisch (KFU, Graz), Laurent


  1. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Nonlinear infinite-horizon control using generalized Lyapunov equations Tobias Breiten Karl Kunisch (KFU, Graz), Laurent Pfeiffer (INRIA, Paris) Workshop on “New trends in PDE constrained optimization” Special Semester on Optimization 2019 - RICAM Linz October 14, 2019

  2. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Linear quadratic control problems Consider a linear system y ( t ) = Ay ( t ) + Bu ( t ) , ˙ y (0) = y 0 ∈ Y , y obs ( t ) = Cy ( t ) Hilbert spaces U , Y , Z , A generator of an analytic C 0 -semigroup e At on Y , control operator B ∈ L ( U , Y ), s.t. ( A , B ) is stabilizable, output operator C ∈ L ( Y , Z ), s.t. ( A , C ) is detectable. Let us focus on the infinite-horizon control problem � ∞ 1 Z + β 2 � y obs � 2 2 � u � 2 u ∈ L 2 (0 , ∞ ; U ) J ( y 0 , u ) = min U d t . 0 u = − 1 Optimal feedback ¯ β B ∗ Π¯ y by algebraic Riccati equation A ∗ Π + Π A − 1 β Π BB ∗ Π + C ∗ C = 0 .

  3. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Linear quadratic control problems Consider a linear system y ( t ) = Ay ( t ) + Bu ( t ) , ˙ y (0) = y 0 ∈ Y , y obs ( t ) = Cy ( t ) Hilbert spaces U , Y , Z , A generator of an analytic C 0 -semigroup e At on Y , control operator B ∈ L ( U , Y ), s.t. ( A , B ) is stabilizable, output operator C ∈ L ( Y , Z ), s.t. ( A , C ) is detectable. Let us focus on the infinite-horizon control problem � ∞ 1 Z + β 2 � y obs � 2 2 � u � 2 u ∈ L 2 (0 , ∞ ; U ) J ( y 0 , u ) = min U d t . 0 u = − 1 Optimal feedback ¯ β B ∗ Π¯ y by algebraic Riccati equation A ∗ Π + Π A − 1 β Π BB ∗ Π + C ∗ C = 0 .

  4. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING The ARE: feedback, optimal cost Well-known : ∃ ! stabilizing Π = Π ∗ � 0 ∈ L ( Y ) s.t. ∀ y 1 , y 2 ∈ D ( A ): � Ay 1 , Π y 2 � Y + � Π y 1 , Ay 2 � Y + � Cy 1 , Cy 2 � Z − 1 β � B ∗ Π y 1 , B ∗ Π y 2 � U = 0 . u J ( y 0 , u ) = 1 Minimal value function V ( y 0 ) := min 2 � y 0 , Π y 0 � Y . Note : for B ∈ L ( U , [ D ( A ∗ )] ′ ) not obvious that B ∗ Π ∈ L ( Y , U ) Alternative interpretation for A π := A − 1 β BB ∗ Π T ( A π y 1 , y 2 ) + T ( y 1 , A π y 2 ) = R ( y 1 , y 2 ) , (1) where T ( y 1 , y 2 ) := � y 1 , Π y 2 � Y , R ( y 1 , y 2 ) := −� Cy 1 , Cy 2 � Z − 1 β � B ∗ Π y 1 , B ∗ Π y 2 � U .

  5. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING The ARE: feedback, optimal cost Well-known : ∃ ! stabilizing Π = Π ∗ � 0 ∈ L ( Y ) s.t. ∀ y 1 , y 2 ∈ D ( A ): � Ay 1 , Π y 2 � Y + � Π y 1 , Ay 2 � Y + � Cy 1 , Cy 2 � Z − 1 β � B ∗ Π y 1 , B ∗ Π y 2 � U = 0 . u J ( y 0 , u ) = 1 Minimal value function V ( y 0 ) := min 2 � y 0 , Π y 0 � Y . Note : for B ∈ L ( U , [ D ( A ∗ )] ′ ) not obvious that B ∗ Π ∈ L ( Y , U ) Alternative interpretation for A π := A − 1 β BB ∗ Π T ( A π y 1 , y 2 ) + T ( y 1 , A π y 2 ) = R ( y 1 , y 2 ) , (1) where T ( y 1 , y 2 ) := � y 1 , Π y 2 � Y , R ( y 1 , y 2 ) := −� Cy 1 , Cy 2 � Z − 1 β � B ∗ Π y 1 , B ∗ Π y 2 � U .

  6. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING The ARE: feedback, optimal cost Well-known : ∃ ! stabilizing Π = Π ∗ � 0 ∈ L ( Y ) s.t. ∀ y 1 , y 2 ∈ D ( A ): � Ay 1 , Π y 2 � Y + � Π y 1 , Ay 2 � Y + � Cy 1 , Cy 2 � Z − 1 β � B ∗ Π y 1 , B ∗ Π y 2 � U = 0 . u J ( y 0 , u ) = 1 Minimal value function V ( y 0 ) := min 2 � y 0 , Π y 0 � Y . Note : for B ∈ L ( U , [ D ( A ∗ )] ′ ) not obvious that B ∗ Π ∈ L ( Y , U ) Alternative interpretation for A π := A − 1 β BB ∗ Π T ( A π y 1 , y 2 ) + T ( y 1 , A π y 2 ) = R ( y 1 , y 2 ) , (1) where T ( y 1 , y 2 ) := � y 1 , Π y 2 � Y , R ( y 1 , y 2 ) := −� Cy 1 , Cy 2 � Z − 1 β � B ∗ Π y 1 , B ∗ Π y 2 � U .

  7. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING The ARE: feedback, optimal cost Well-known : ∃ ! stabilizing Π = Π ∗ � 0 ∈ L ( Y ) s.t. ∀ y 1 , y 2 ∈ D ( A ): � Ay 1 , Π y 2 � Y + � Π y 1 , Ay 2 � Y + � Cy 1 , Cy 2 � Z − 1 β � B ∗ Π y 1 , B ∗ Π y 2 � U = 0 . u J ( y 0 , u ) = 1 Minimal value function V ( y 0 ) := min 2 � y 0 , Π y 0 � Y . Note : for B ∈ L ( U , [ D ( A ∗ )] ′ ) not obvious that B ∗ Π ∈ L ( Y , U ) Alternative interpretation for A π := A − 1 β BB ∗ Π T ( A π y 1 , y 2 ) + T ( y 1 , A π y 2 ) = R ( y 1 , y 2 ) , (1) where T ( y 1 , y 2 ) := � y 1 , Π y 2 � Y , R ( y 1 , y 2 ) := −� Cy 1 , Cy 2 � Z − 1 β � B ∗ Π y 1 , B ∗ Π y 2 � U .

  8. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Outline of this talk Consider the multidimensional analogue of (1) � k T k ( y 1 , . . . , y i − 1 , A π y i , y i +1 , . . . , y k ) = R k ( y 1 , . . . , y k ) i =1 where ( y 1 , . . . , y k ) ∈ D ( A ) k and R k ∈ M ( D ( A ) k , R ). Questions: Why should we consider these equations? Which theoretical results do we have for these equations? How should we treat these equations numerically?

  9. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Outline of this talk Consider the multidimensional analogue of (1) � k T k ( y 1 , . . . , y i − 1 , A π y i , y i +1 , . . . , y k ) = R k ( y 1 , . . . , y k ) i =1 where ( y 1 , . . . , y k ) ∈ D ( A ) k and R k ∈ M ( D ( A ) k , R ). Questions: Why should we consider these equations? Which theoretical results do we have for these equations? How should we treat these equations numerically?

  10. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Outline of this talk Consider the multidimensional analogue of (1) � k T k ( y 1 , . . . , y i − 1 , A π y i , y i +1 , . . . , y k ) = R k ( y 1 , . . . , y k ) i =1 where ( y 1 , . . . , y k ) ∈ D ( A ) k and R k ∈ M ( D ( A ) k , R ). Questions: Why should we consider these equations? Which theoretical results do we have for these equations? How should we treat these equations numerically?

  11. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Outline of this talk Consider the multidimensional analogue of (1) � k T k ( y 1 , . . . , y i − 1 , A π y i , y i +1 , . . . , y k ) = R k ( y 1 , . . . , y k ) i =1 where ( y 1 , . . . , y k ) ∈ D ( A ) k and R k ∈ M ( D ( A ) k , R ). Questions: Why should we consider these equations? Which theoretical results do we have for these equations? How should we treat these equations numerically?

  12. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Nonlinear ∞ -horizon control: R n Consider y ( t ) = Ay ( t ) + f ( y ( t )) + Bu ( t ) , ˙ y (0) = y 0 , y obs ( t ) = Cy ( t ) , A ∈ R n × n , B ∈ R n × m , C ∈ R p × n , f : R n → R n , f (0) = 0 Associated minimal value function � ∞ � ∞ 1 � y obs ( t ) � 2 d t + β � u ( t ) � 2 d t . V ( y 0 ) = inf 2 2 u ∈ L 2 (0 , ∞ ; R m ) 0 0 If V sufficiently smooth, the Hamilton-Jacobi-Bellman equation ( Ay + f ( y )) ⊤ ∇V ( y ) + 1 2 � Cy � 2 − 1 2 β � B ⊤ ∇V ( y ) � 2 = 0 y ) = − 1 β B ⊤ ∇V (¯ yields optimal feedback law ¯ u (¯ y ).

  13. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Taylor expansions – basic idea Idea: Expand V around 0 as follows V ( y ) = V (0) + D V (0)( y ) + 1 2! D 2 V (0)( y , y ) + 1 3! D 3 V (0)( y , y , y ) + . . . and approximate optimal feedback law via d � u d ( y ) = − 1 1 ( k − 1)! B ⊤ D j V (0)( · , y , . . . , y ) . β k =2 Finite-dimensional case: [Aguilar,Al’brekht,Cebuhar,Costanza,Garrard,Krener,Lukes,... ] Infinite-dimensional case: [Thevenet/Buchot/Raymond,B./Kunisch/Pfeiffer]

  14. INSTITUTE OF MATHEMATICS Nonlinear infinite-horizon control using generalized Lyapunov equations AND SCIENTIFIC COMPUTING Taylor expansions – basic idea Idea: Expand V around 0 as follows V ( y ) = V (0) + D V (0)( y ) + 1 2! D 2 V (0)( y , y ) + 1 3! D 3 V (0)( y , y , y ) + . . . and approximate optimal feedback law via d � u d ( y ) = − 1 1 ( k − 1)! B ⊤ D j V (0)( · , y , . . . , y ) . β k =2 Finite-dimensional case: [Aguilar,Al’brekht,Cebuhar,Costanza,Garrard,Krener,Lukes,... ] Infinite-dimensional case: [Thevenet/Buchot/Raymond,B./Kunisch/Pfeiffer]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend