a survey on nonlinear dirichlet pb classical results and
play

A survey on nonlinear Dirichlet pb: classical results and - PowerPoint PPT Presentation

A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Lucio Boccardo


  1. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet) � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; Recall f ( x ) ∈ L m (Ω) , m ≥ 1 ⇒  2 N N +2 < m < N u ∈ L m ∗∗ (Ω); 2 , 2 N m ≥  N +2 m = N / 2 , u exp. summ. u ∈ W 1 , 2 0 (Ω) weak sol .  m > N / 2 , u ∈ L ∞ (Ω) . � 2 N 1 ≤ m < u ∈ W 1 , m ∗ 2 N 1 < m < N +2 , (Ω) distr . sol . ; N +2 0 u ∈ W 1 , q N m = 1 , 0 (Ω) , q < N − 1 . u �∈ W 1 , 2 0 (Ω) The above red existence results can be seen as an improvement of the Calderon-Zygmund theory for linear elliptic operators.

  2. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet) � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; Recall f ( x ) ∈ L m (Ω) , m ≥ 1 ⇒  2 N u ∈ L m ∗∗ (Ω); N +2 < m < N 2 , 2 N m ≥  N +2 m = N / 2 , u exp. summ. u ∈ W 1 , 2 0 (Ω) weak sol .  m > N / 2 , u ∈ L ∞ (Ω) . � 2 N 1 ≤ m < u ∈ W 1 , m ∗ 2 N 1 < m < N +2 , (Ω) distr . sol . ; N +2 0 u ∈ W 1 , q N m = 1 , 0 (Ω) , q < N − 1 . u �∈ W 1 , 2 0 (Ω)

  3. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet) � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; Recall f ( x ) ∈ L m (Ω) , m ≥ 1 ⇒  2 N u ∈ L m ∗∗ (Ω); N +2 < m < N 2 , 2 N m ≥  N +2 m = N / 2 , u exp. summ. u ∈ W 1 , 2 0 (Ω) weak sol .  m > N / 2 , u ∈ L ∞ (Ω) . � 2 N 1 ≤ m < u ∈ W 1 , m ∗ 2 N 1 < m < N +2 , (Ω) distr . sol . ; N +2 0 u ∈ W 1 , q N m = 1 , 0 (Ω) , q < N − 1 . u �∈ W 1 , 2 0 (Ω) Note the above th. say that,

  4. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet) � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; Recall f ( x ) ∈ L m (Ω) , m ≥ 1 ⇒  2 N u ∈ L m ∗∗ (Ω); N +2 < m < N 2 , 2 N m ≥  N +2 m = N / 2 , u exp. summ. u ∈ W 1 , 2 0 (Ω) weak sol .  m > N / 2 , u ∈ L ∞ (Ω) . � 2 N 1 ≤ m < u ∈ W 1 , m ∗ 2 N 1 < m < N +2 , (Ω) distr . sol . ; N +2 0 u ∈ W 1 , q N m = 1 , 0 (Ω) , q < N − 1 . u �∈ W 1 , 2 0 (Ω) Note the above th. say that, non smooth M(x),

  5. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet) � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; Recall f ( x ) ∈ L m (Ω) , m ≥ 1 ⇒  2 N u ∈ L m ∗∗ (Ω); N +2 < m < N 2 , 2 N m ≥  N +2 m = N / 2 , u exp. summ. u ∈ W 1 , 2 0 (Ω) weak sol .  m > N / 2 , u ∈ L ∞ (Ω) . � 2 N 1 ≤ m < u ∈ W 1 , m ∗ 2 N 1 < m < N +2 , (Ω) distr . sol . ; N +2 0 u ∈ W 1 , q N m = 1 , 0 (Ω) , q < N − 1 . u �∈ W 1 , 2 0 (Ω) Note the above th. say that, non smooth M(x),  in the blue case, more summability on f ⇒     only more summability on u ;    

  6. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet) � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; Recall f ( x ) ∈ L m (Ω) , m ≥ 1 ⇒  2 N u ∈ L m ∗∗ (Ω); N +2 < m < N 2 , 2 N m ≥  N +2 m = N / 2 , u exp. summ. u ∈ W 1 , 2 0 (Ω) weak sol .  m > N / 2 , u ∈ L ∞ (Ω) . � 2 N 1 ≤ m < u ∈ W 1 , m ∗ 2 N 1 < m < N +2 , (Ω) distr . sol . ; N +2 0 u ∈ W 1 , q N m = 1 , 0 (Ω) , q < N − 1 . u �∈ W 1 , 2 0 (Ω) Note the above th. say that, non smooth M(x),  in the blue case, more summability on f ⇒     only more summability on u ; in the red case, more summability on f ⇒     more summability on u and also more summability on ∇ u .

  7. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet)

  8. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet) Right hand side div(F), instead of f(x)

  9. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet) Nonuniqueness of the distributional solutions Good definition of solution in order to have uniqueness.

  10. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Linear Dirichlet problems Classical results (Stampacchia) and nonclassical results (B-Gallouet) Variational interpretation T-minima

  11. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund f ∈ L m (Ω) , 1 < m < ∞ , ? ⇒ ? u ∈ W 1 , m ∗ (Ω) 0 3 “Calderon-Zygmund”=M smooth enough: recall a papers by Brezis and Mingione 4 [LB2014,70Haim]

  12. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund f ∈ L m (Ω) , 1 < m < ∞ , ? ⇒ ? u ∈ W 1 , m ∗ (Ω) 0 M ( x ) elliptic, 3 3 “Calderon-Zygmund”=M smooth enough: recall a papers by Brezis and Mingione 4 [LB2014,70Haim]

  13. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund f ∈ L m (Ω) , 1 < m < ∞ , ? ⇒ ? u ∈ W 1 , m ∗ (Ω) 0 M ( x ) elliptic, 3 bounded, measurable matrix 3 “Calderon-Zygmund”=M smooth enough: recall a papers by Brezis and Mingione 4 [LB2014,70Haim]

  14. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund f ∈ L m (Ω) , 1 < m < ∞ , ? ⇒ ? u ∈ W 1 , m ∗ (Ω) 0 M ( x ) elliptic, 3 bounded, measurable matrix � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; ∃ 3 “Calderon-Zygmund”=M smooth enough: recall a papers by Brezis and Mingione 4 [LB2014,70Haim]

  15. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund f ∈ L m (Ω) , 1 < m < ∞ , ? ⇒ ? u ∈ W 1 , m ∗ (Ω) 0 M ( x ) elliptic, 3 bounded, measurable matrix � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; ∃ Ω , M , f ( x ) ∈ L m (Ω) , m > N 2 3 “Calderon-Zygmund”=M smooth enough: recall a papers by Brezis and Mingione 4 [LB2014,70Haim]

  16. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund f ∈ L m (Ω) , 1 < m < ∞ , ? ⇒ ? u ∈ W 1 , m ∗ (Ω) 0 M ( x ) elliptic, 3 bounded, measurable matrix � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; ∃ Ω , M , f ( x ) ∈ L m (Ω) , m > N 2 u ∈ W 1 , 2 0 (Ω) ∩ L ∞ (Ω) , 3 “Calderon-Zygmund”=M smooth enough: recall a papers by Brezis and Mingione 4 [LB2014,70Haim]

  17. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund f ∈ L m (Ω) , 1 < m < ∞ , ? ⇒ ? u ∈ W 1 , m ∗ (Ω) 0 M ( x ) elliptic, 3 bounded, measurable matrix � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; ∃ Ω , M , f ( x ) ∈ L m (Ω) , m > N 2 u ∈ W 1 , 2 0 (Ω) ∩ L ∞ (Ω) , but 3 “Calderon-Zygmund”=M smooth enough: recall a papers by Brezis and Mingione 4 [LB2014,70Haim]

  18. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund f ∈ L m (Ω) , 1 < m < ∞ , ? ⇒ ? u ∈ W 1 , m ∗ (Ω) 0 M ( x ) elliptic, 3 bounded, measurable matrix � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; ∃ Ω , M , f ( x ) ∈ L m (Ω) , m > N 2 u ∈ W 1 , 2 u �∈ W 1 , m ∗ (Ω) 4 0 (Ω) ∩ L ∞ (Ω) , but 0 3 “Calderon-Zygmund”=M smooth enough: recall a papers by Brezis and Mingione 4 [LB2014,70Haim]

  19. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund f ∈ L m (Ω) , 1 < m < ∞ , ? ⇒ ? u ∈ W 1 , m ∗ (Ω) 0 M ( x ) elliptic, 3 bounded, measurable matrix � − div � � M ( x ) ∇ u = f , in Ω ; u = 0 , on ∂ Ω ; ∃ Ω , M , f ( x ) ∈ L m (Ω) , m > N 2 u ∈ W 1 , 2 u �∈ W 1 , m ∗ (Ω) 4 0 (Ω) ∩ L ∞ (Ω) , but 0 2 + δ < m ≤ N 2 work in progress ... 3 “Calderon-Zygmund”=M smooth enough: recall a papers by Brezis and Mingione 4 [LB2014,70Haim]

  20. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions No Calderon-Zygmund Summary

  21. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient

  22. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Classic framework Principal part nonlinear w.r.t. the gradient

  23. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Classic framework 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ;

  24. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Classic framework 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; [Leray-Lions]:

  25. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Classic framework 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; [Leray-Lions]: m ≥ ( p ∗ ) ′ = ( p − 1) N + p ⇒ u ∈ W 1 , p pN 0 (Ω) weak solution

  26. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Classic framework 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; [Leray-Lions]: m ≥ ( p ∗ ) ′ = ( p − 1) N + p ⇒ u ∈ W 1 , p pN 0 (Ω) weak solution +Stampacchia-type-summability: ( p − 1) N + p ≤ m < N pN ⇒ u ∈ L [( p − 1) m ∗ ] ∗ (Ω) [B-Gia.] p ( p < N ) m > N ⇒ u ∈ L ∞ (Ω) [Stampacchia] p

  27. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Nonlinear CZ 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; [Leray-Lions]: m ≥ ( p ∗ ) ′ = ( p − 1) N + p ⇒ u ∈ W 1 , p pN 0 (Ω) +Stampacchia-type-summability: u ∈ L [( p − 1) m ∗ ] ∗ (Ω) [B-Gia.] 5 parabolic pb. / general Leray-Lions operators

  28. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Nonlinear CZ 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; [Leray-Lions]: m ≥ ( p ∗ ) ′ = ( p − 1) N + p ⇒ u ∈ W 1 , p pN 0 (Ω) +Stampacchia-type-summability: u ∈ L [( p − 1) m ∗ ] ∗ (Ω) [B-Gia.] Nonlinear CZ 5 parabolic pb. / general Leray-Lions operators

  29. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Nonlinear CZ 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; [Leray-Lions]: m ≥ ( p ∗ ) ′ = ( p − 1) N + p ⇒ u ∈ W 1 , p pN 0 (Ω) +Stampacchia-type-summability: u ∈ L [( p − 1) m ∗ ] ∗ (Ω) [B-Gia.] Nonlinear CZ � ( p − 1) N + p ⇒ u ∈ W 1 , ( p − 1 ) m ⋆ N pN ( p − 1) N +1 < m < ( Ω ) , [ BG , 20 century ] 0 N ⇒ u ∈ W 1 , 1 ( p − 1) N +1 , 1 < p < 2 − 1 N 0 ( Ω ) , [ BG , 2012] 5 m = 5 parabolic pb. / general Leray-Lions operators

  30. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Nonlinear CZ 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; [Leray-Lions]: m ≥ ( p ∗ ) ′ = ( p − 1) N + p ⇒ u ∈ W 1 , p pN 0 (Ω) +Stampacchia-type-summability: u ∈ L [( p − 1) m ∗ ] ∗ (Ω) [B-Gia.] Nonlinear CZ � ( p − 1) N + p ⇒ u ∈ W 1 , ( p − 1 ) m ⋆ N pN ( p − 1) N +1 < m < ( Ω ) , [ BG , 20 century ] 0 N ⇒ u ∈ W 1 , 1 ( p − 1) N +1 , 1 < p < 2 − 1 N 0 ( Ω ) , [ BG , 2012] 5 m = Note that ( p − 1) m ⋆ > 1 ⇐ N ⇒ ( p − 1) N +1 < m 5 parabolic pb. / general Leray-Lions operators

  31. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Nonlinear CZ 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; ( p − 1) N +1 , 1 < p < 2 − 1 N 1 ≤ m < N :

  32. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Nonlinear CZ 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; ( p − 1) N +1 , 1 < p < 2 − 1 N 1 ≤ m < N : meaning of solution

  33. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Nonlinear CZ 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; ( p − 1) N +1 , 1 < p < 2 − 1 N 1 ≤ m < N : meaning of solution � � a ( x ) |∇ u | p − 2 ∇ u ∇ T k [ u − ϕ ] ≤ [ BBG ... ] f ( x ) T k [ u − ϕ ] Ω Ω ∀ ϕ ∈ W 1 , p 0 (Ω) ∩ L ∞ (Ω)

  34. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Nonlinear CZ 0 < α ≤ a ( x ) ≤ β , a(x) bounded and measurable � − div � � a ( x ) |∇ u | p − 2 ∇ u = f ( x ) ∈ L m ( Ω ) , in Ω ; u = 0 , on ∂ Ω ; [Leray-Lions]: m ≥ ( p ∗ ) ′ = ( p − 1) N + p ⇒ u ∈ W 1 , p pN 0 (Ω) +Stampacchia-type-summability: u ∈ L [( p − 1) m ∗ ] ∗ (Ω) [B-Gia.] Nonlinear CZ � ( p − 1) N + p ⇒ u ∈ W 1 , ( p − 1 ) m ⋆ pN N ( p − 1) N +1 < m < ( Ω ) , [ BG , 20 century ] 0 N ⇒ u ∈ W 1 , 1 ( p − 1) N +1 , 1 < p < 2 − 1 N 0 ( Ω ) , [ BG , 2012] 6 m = ( p − 1) N +1 , 1 < p < 2 − 1 N 1 ≤ m < N : meaning of solution � � a ( x ) |∇ u | p − 2 ∇ u ∇ T k [ u − ϕ ] ≤ [ BBG ... ] f ( x ) T k [ u − ϕ ] Ω Ω ∀ ϕ ∈ W 1 , p 0 (Ω) ∩ L ∞ (Ω)

  35. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Nonlinear CZ and p=2: linear problems last results if p=2

  36. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )

  37. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )  f ( x ) � � a ( x ) |∇ u n | p − 2 ∇ u n  − div = n | f | , in Ω ; 1+ 1 ∃ u n , and u n ∈ L ∞ (Ω)  u n = 0 , on ∂ Ω ;

  38. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )  f ( x ) � � a ( x ) |∇ u n | p − 2 ∇ u n  − div = n | f | , in Ω ; 1+ 1 ∃ u n , and u n ∈ L ∞ (Ω)  u n = 0 , on ∂ Ω ; Nonlinear CZ � N pN ( p − 1) N +1 < m < ( p − 1) N + p ⇒

  39. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )  f ( x ) � � a ( x ) |∇ u n | p − 2 ∇ u n  − div = n | f | , in Ω ; 1+ 1 ∃ u n , and u n ∈ L ∞ (Ω)  u n = 0 , on ∂ Ω ; Nonlinear CZ � ( p − 1) N + p ⇒ { u n } bounded in W 1 , ( p − 1 ) m ⋆ N pN ( p − 1) N +1 < m < ( Ω ) 0

  40. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )  f ( x ) � � a ( x ) |∇ u n | p − 2 ∇ u n  − div = n | f | , in Ω ; 1+ 1 ∃ u n , and u n ∈ L ∞ (Ω)  u n = 0 , on ∂ Ω ; Nonlinear CZ � ( p − 1) N + p ⇒ { u n } bounded in W 1 , ( p − 1 ) m ⋆ N pN ( p − 1) N +1 < m < ( Ω ) 0 ( p − 1) N +1 , 1 < p < 2 − 1 N m = N ⇒

  41. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )  f ( x ) � � a ( x ) |∇ u n | p − 2 ∇ u n  − div = n | f | , in Ω ; 1+ 1 ∃ u n , and u n ∈ L ∞ (Ω)  u n = 0 , on ∂ Ω ; Nonlinear CZ � ( p − 1) N + p ⇒ { u n } bounded in W 1 , ( p − 1 ) m ⋆ N pN ( p − 1) N +1 < m < ( Ω ) 0 ( p − 1) N +1 , 1 < p < 2 − 1 N m = N ⇒ { u n } bdd in

  42. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )  f ( x ) � � a ( x ) |∇ u n | p − 2 ∇ u n  − div = n | f | , in Ω ; 1+ 1 ∃ u n , and u n ∈ L ∞ (Ω)  u n = 0 , on ∂ Ω ; Nonlinear CZ � ( p − 1) N + p ⇒ { u n } bounded in W 1 , ( p − 1 ) m ⋆ N pN ( p − 1) N +1 < m < ( Ω ) 0 N ⇒ { u n } bdd in W 1 , 1 ( p − 1) N +1 , 1 < p < 2 − 1 N m = 0 ( Ω )

  43. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )  f ( x ) � � a ( x ) |∇ u n | p − 2 ∇ u n  − div = n | f | , in Ω ; 1+ 1 ∃ u n , and u n ∈ L ∞ (Ω)  u n = 0 , on ∂ Ω ; Nonlinear CZ � ( p − 1) N + p ⇒ { u n } bounded in W 1 , ( p − 1 ) m ⋆ N pN ( p − 1) N +1 < m < ( Ω ) 0 � N ⇒ { u n } bdd in W 1 , 1 W 1 , 1 ? ( p − 1) N +1 , 1 < p < 2 − 1 N m = 0 ( Ω ) 0

  44. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )  f ( x ) � � a ( x ) |∇ u n | p − 2 ∇ u n  − div = n | f | , in Ω ; 1+ 1 ∃ u n , and u n ∈ L ∞ (Ω)  u n = 0 , on ∂ Ω ; Nonlinear CZ � ( p − 1) N + p ⇒ { u n } bounded in W 1 , ( p − 1 ) m ⋆ N pN ( p − 1) N +1 < m < ( Ω ) 0 � N ⇒ { u n } bdd in W 1 , 1 W 1 , 1 ? ( p − 1) N +1 , 1 < p < 2 − 1 N m = 0 ( Ω ) 0 ∇ u n ( x ) converges a.e. to ∇ u ( x )

  45. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Sketch of the existence proof 0 < α ≤ a ( x ) ≤ β , a(x) measurable, f ( x ) ∈ L m ( Ω )  f ( x ) � � a ( x ) |∇ u n | p − 2 ∇ u n  − div = n | f | , in Ω ; 1+ 1 ∃ u n , and u n ∈ L ∞ (Ω)  u n = 0 , on ∂ Ω ; Nonlinear CZ � ( p − 1) N + p ⇒ { u n } bounded in W 1 , ( p − 1 ) m ⋆ N pN ( p − 1) N +1 < m < ( Ω ) 0 � N ⇒ { u n } bdd in W 1 , 1 W 1 , 1 ? ( p − 1) N +1 , 1 < p < 2 − 1 N m = 0 ( Ω ) 0 ∇ u n ( x ) converges a.e. to ∇ u ( x ) third step (pass to the limit n → ∞ ) less difficult

  46. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Principal part nonlinear w.r.t. the gradient Tools in the existence proofs Summary

  47. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Right hand side f ( x ) belonging to Marcinkiewicz spaces C-Z-Stampacchia theory for f ( x ) belonging to Marcinkiewicz spaces

  48. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Unilateral problems Unilateral problems and Lewy-Stampacchia inequality

  49. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Recent results and work in progress

  50. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Recent results and work in progress Impact of terms of order 1 (Terms of order 1 do not help coercivity)

  51. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Recent results and work in progress Impact of terms of order 1 (Terms of order 1 do not help coercivity) � − div � � M ( x ) ∇ u − div ( u E ( x )) = f , in Ω ; u = 0 , on ∂ Ω ;

  52. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Recent results and work in progress Impact of terms of order 1 (Terms of order 1 do not help coercivity) � − div � � M ( x ) ∇ u − div ( u E ( x )) = f , in Ω ; u = 0 , on ∂ Ω ; � − div � � M ( x ) ∇ u + D ( x ) · ∇ u = f , in Ω ; u = 0 , on ∂ Ω ;

  53. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms

  54. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ;

  55. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; It is possible to prove the existence of weak solutions, even beyond the natural duality pairing; that is: there exists a weak solution

  56. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; It is possible to prove the existence of weak solutions, even beyond the natural duality pairing; that is: there exists a weak solution u ∈ W 1 , 2 0 ( Ω ) ∩ L ( r − 1) m (Ω)

  57. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ;

  58. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; Main points

  59. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; Main points (formally)

  60. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; Main points (formally) � u | u | r − 2 � L m (Ω) ≤ � f � L m (Ω)

  61. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; Main points (formally) � u | u | r − 2 � L m (Ω) ≤ � f � L m (Ω) ⇒ u ∈ L ( r − 1) m (Ω)

  62. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; Main points (formally) � u | u | r − 2 � L m (Ω) ≤ � f � L m (Ω) ⇒ u ∈ L ( r − 1) m (Ω) We can use u as test function if

  63. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; Main points (formally) � u | u | r − 2 � L m (Ω) ≤ � f � L m (Ω) ⇒ u ∈ L ( r − 1) m (Ω) ( r − 1) m + 1 1 We can use u as test function if m ≤ 1

  64. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; Main points (formally) � u | u | r − 2 � L m (Ω) ≤ � f � L m (Ω) ⇒ u ∈ L ( r − 1) m (Ω) ( r − 1) m + 1 1 We can use u as test function if m ≤ 1 ( r − 1) m + 1 1 m ≤ 1 ⇐ ⇒ m ≥ r ′ Then � � � | u | r = M ( x ) ∇ u ∇ u + f ( x ) u ( x ) < ∞ Ω Ω Ω

  65. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) f � � + u n | u n | r − 2 = u n ∈ W 1 , 2 0 (Ω) ∩ L ∞ (Ω) : − div M ( x ) ∇ u n 1 + 1 n | f |

  66. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) f � � + u n | u n | r − 2 = u n ∈ W 1 , 2 0 (Ω) ∩ L ∞ (Ω) : − div M ( x ) ∇ u n 1 + 1 n | f | � u n | u n | r − 2 � L m (Ω) ≤ � f � L m (Ω)

  67. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) f � � + u n | u n | r − 2 = u n ∈ W 1 , 2 0 (Ω) ∩ L ∞ (Ω) : − div M ( x ) ∇ u n 1 + 1 n | f | � u n | u n | r − 2 � L m (Ω) ≤ � f � L m (Ω) ⇒ { u n } bdd in L ( r − 1) m

  68. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) f � � + u n | u n | r − 2 = u n ∈ W 1 , 2 0 (Ω) ∩ L ∞ (Ω) : − div M ( x ) ∇ u n 1 + 1 n | f | � u n | u n | r − 2 � L m (Ω) ≤ � f � L m (Ω) ⇒ { u n } bdd in L ( r − 1) m We can use u n as test function if ( r − 1) m + 1 1 m ≤ 1 ⇐ ⇒ m ≥ r ′

  69. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) f � � + u n | u n | r − 2 = u n ∈ W 1 , 2 0 (Ω) ∩ L ∞ (Ω) : − div M ( x ) ∇ u n 1 + 1 n | f | � u n | u n | r − 2 � L m (Ω) ≤ � f � L m (Ω) ⇒ { u n } bdd in L ( r − 1) m We can use u n as test function if ( r − 1) m + 1 1 m ≤ 1 ⇐ ⇒ m ≥ r ′ � � | u n | r ≤ � f � L m (Ω) � u n � L m ′ (Ω) ⇒ M ( x ) ∇ u n ∇ u n + Ω Ω

  70. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) f � � + u n | u n | r − 2 = u n ∈ W 1 , 2 0 (Ω) ∩ L ∞ (Ω) : − div M ( x ) ∇ u n 1 + 1 n | f | � u n | u n | r − 2 � L m (Ω) ≤ � f � L m (Ω) ⇒ { u n } bdd in L ( r − 1) m We can use u n as test function if ( r − 1) m + 1 1 m ≤ 1 ⇐ ⇒ m ≥ r ′ � � | u n | r ≤ � f � L m (Ω) � u n � L m ′ (Ω) ⇒ M ( x ) ∇ u n ∇ u n + Ω Ω { u n } bdd in W 1 , 2 0 (Ω)

  71. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero [R. Cirmi] r ′ ≤ m < 2 N N +2 , ( r > 2 ∗ ) f � � + u n | u n | r − 2 = u n ∈ W 1 , 2 0 (Ω) ∩ L ∞ (Ω) : − div M ( x ) ∇ u n 1 + 1 n | f | � u n | u n | r − 2 � L m (Ω) ≤ � f � L m (Ω) ⇒ { u n } bdd in L ( r − 1) m We can use u n as test function if ( r − 1) m + 1 1 m ≤ 1 ⇐ ⇒ m ≥ r ′ � � | u n | r ≤ � f � L m (Ω) � u n � L m ′ (Ω) ⇒ M ( x ) ∇ u n ∇ u n + Ω Ω { u n } bdd in W 1 , 2 0 (Ω) Pass to the limit

  72. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero Regularizing effect r ′ ≤ m < 2 N N +2 Regularizing effect:

  73. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero Regularizing effect r ′ ≤ m < 2 N N +2 Regularizing effect: the solution u of � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; is more regular than w

  74. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero Regularizing effect r ′ ≤ m < 2 N N +2 Regularizing effect: the solution u of � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; is more regular than w solution of � − div � � = f ∈ L m (Ω) , M ( x ) ∇ w in Ω ; w = 0 , on ∂ Ω ;

  75. A survey on nonlinear Dirichlet pb: classical results and Calderon-Zygmund theory for infinite energy solutions Regularizing effect of some lower order terms Regularizing effect of lower order terms of order zero Regularizing effect r ′ ≤ m < 2 N N +2 Regularizing effect: the solution u of � − div � � + u | u | r − 2 = f ∈ L m (Ω) , M ( x ) ∇ u in Ω ; u = 0 , on ∂ Ω ; is more regular than w solution of � − div � � = f ∈ L m (Ω) , M ( x ) ∇ w in Ω ; w = 0 , on ∂ Ω ; since u ∈ W 1 , 2 0 (Ω) , but w �∈ W 1 , 2 0 (Ω) : N +2 ⇒ m ∗ < 2 . w only belongs to W 1 , m ∗ 2 N (Ω) and m < 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend