progress towards nucleon nucleon interactions with
play

Progress towards nucleon-nucleon interactions with stochastic LapH - PowerPoint PPT Presentation

Ben Hrz (LBNL) Frontiers in Lattice QCD and related topics Yukawa Institute for Theoretical Physics, Kyoto University Apr 17, 2019 Progress towards nucleon-nucleon interactions with stochastic LapH [Estabrooks, Martin 1975] [Protopopescu


  1. Ben Hörz (LBNL) Frontiers in Lattice QCD and related topics Yukawa Institute for Theoretical Physics, Kyoto University Apr 17, 2019 Progress towards nucleon-nucleon interactions with stochastic LapH

  2. [Estabrooks, Martin 1975] [Protopopescu et al. 1973] nucleon-nucleon interactions nucleon-hyperon interactions multi-hadron state 1. What can we learn about the QCD spectrum from first principles? 2. Lattice QCD as a tool for nuclear physics [NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering 1706.03621] 1/16 Hadron interactions from Lattice QCD ∆ ⟨ Nπ | J µ | N ⟩ N Σ , N Λ

  3. [Estabrooks, Martin 1975] [Protopopescu et al. 1973] nucleon-nucleon interactions nucleon-hyperon interactions multi-hadron state 1. What can we learn about the QCD spectrum from first principles? 2. Lattice QCD as a tool for nuclear physics [NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering 1706.03621] 1/16 Hadron interactions from Lattice QCD ∆ ⟨ Nπ | J µ | N ⟩ N Σ , N Λ

  4. [Estabrooks, Martin 1975] [Protopopescu et al. 1973] nucleon-nucleon interactions nucleon-hyperon interactions multi-hadron state 1. What can we learn about the QCD spectrum from first principles? physics [NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering 1706.03621] 1/16 Hadron interactions from Lattice QCD ∆ 2. Lattice QCD as a tool for nuclear ⟨ Nπ | J µ | N ⟩ N Σ , N Λ

  5. [Estabrooks, Martin 1975] [Protopopescu et al. 1973] nucleon-nucleon interactions nucleon-hyperon interactions multi-hadron state 1. What can we learn about the QCD spectrum from first principles? physics [NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering 1706.03621] 1/16 Hadron interactions from Lattice QCD ∆ 2. Lattice QCD as a tool for nuclear ⟨ Nπ | J µ | N ⟩ N Σ , N Λ

  6. single particle in a periodic box two spinless particles in a periodic box [Lüscher ’86, ’91] 2/16 Scattering from Lattice QCD ⇝ ∆ E ∝ e − mL L ⇝ ∆ E ∝ a 0 /L 3 + O ( L − 4 ) L ⇒ ‘The Lüscher method’

  7. see also [Hansen, Sharpe 1901.00483] [Briceño, Dudek, Young 1706.06223] 3/16 Review of formalism and results

  8. 4/16 partial wave [Morningstar, Bulava, Singha, Brett, Fallica, Hanlon, BH 1707.05817] on Github group theory worked out and publicly available – known functions (total angular mom.) 2-particle channel Two-particle Quantization Condition E L – FV spectrum M − 1 ( E L ) + F ( E L , L ) [ ] det = 0 M – 2-to-2 scatt. ampl. F

  9. 4/16 partial wave [Morningstar, Bulava, Singha, Brett, Fallica, Hanlon, BH 1707.05817] on Github group theory worked out and publicly available – known functions (total angular mom.) 2-particle channel Two-particle Quantization Condition E L – FV spectrum M − 1 ( E L ) + F ( E L , L ) [ ] det = 0 M – 2-to-2 scatt. ampl. F

  10. 5/16 [plot adapted from Bulava, Fahy, BH, Juge, Morningstar, Wong 1604.05593] same data difgerent way to plot [Meyer, Wittig 1807.09370] e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, …, Dudek et al. 1212.0830, … • benchmark system for the lattice A simple (yet relevant) resonance: ρ (770) 170 4 . 0 E ∗ /m π 130 3 . 5 δ 1 / ◦ 90 3 . 0 50 2 . 5 10 2 . 0 1 u (0) 1 (1) ) 1 (2) 1 (2) 2 (2) 1 (3) ) 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 1 3 ( ( E ∗ /m π A + E + A + B + B + A + E + ⇔ T + 10 ( q cm / m π ) 3 cot δ 1 • elastic ππ scattering neglecting ℓ ≥ 3 partial wave 5 spectrum ⇔ scattering amplitude 0 − 5 − 10 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 E ∗ /m π • recent interest due to its contribution to ( g − 2) µ HVP

  11. 5/16 [plot adapted from Bulava, Fahy, BH, Juge, Morningstar, Wong 1604.05593] same data difgerent way to plot [Meyer, Wittig 1807.09370] e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, …, Dudek et al. 1212.0830, … • benchmark system for the lattice A simple (yet relevant) resonance: ρ (770) 170 4 . 0 E ∗ /m π 130 3 . 5 δ 1 / ◦ 90 3 . 0 50 2 . 5 10 2 . 0 1 u (0) 1 (1) ) 1 (2) 1 (2) 2 (2) 1 (3) ) 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 1 3 ( ( E ∗ /m π A + E + A + B + B + A + E + ⇔ T + 10 ( q cm / m π ) 3 cot δ 1 • elastic ππ scattering neglecting ℓ ≥ 3 partial wave 5 spectrum ⇔ scattering amplitude 0 − 5 − 10 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 E ∗ /m π • recent interest due to its contribution to ( g − 2) µ HVP

  12. 5/16 [plot adapted from Bulava, Fahy, BH, Juge, Morningstar, Wong 1604.05593] same data difgerent way to plot [Meyer, Wittig 1807.09370] e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, …, Dudek et al. 1212.0830, … • benchmark system for the lattice A simple (yet relevant) resonance: ρ (770) 170 4 . 0 E ∗ /m π 130 3 . 5 δ 1 / ◦ 90 3 . 0 50 2 . 5 10 2 . 0 1 u (0) 1 (1) ) 1 (2) 1 (2) 2 (2) 1 (3) ) 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 1 3 ( ( E ∗ /m π A + E + A + B + B + A + E + ⇔ T + 10 ( q cm / m π ) 3 cot δ 1 • elastic ππ scattering neglecting ℓ ≥ 3 partial wave 5 spectrum ⇔ scattering amplitude 0 − 5 − 10 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 E ∗ /m π • recent interest due to its contribution to ( g − 2) µ HVP

  13. 5/16 [plot adapted from Bulava, Fahy, BH, Juge, Morningstar, Wong 1604.05593] same data difgerent way to plot [Meyer, Wittig 1807.09370] e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, …, Dudek et al. 1212.0830, … • benchmark system for the lattice A simple (yet relevant) resonance: ρ (770) 170 4 . 0 E ∗ /m π 130 3 . 5 δ 1 / ◦ 90 3 . 0 50 2 . 5 10 2 . 0 1 u (0) 1 (1) ) 1 (2) 1 (2) 2 (2) 1 (3) ) 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 1 3 ( ( E ∗ /m π A + E + A + B + B + A + E + ⇔ T + 10 ( q cm / m π ) 3 cot δ 1 • elastic ππ scattering neglecting ℓ ≥ 3 partial wave 5 spectrum ⇔ scattering amplitude 0 − 5 − 10 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 E ∗ /m π • recent interest due to its contribution to ( g − 2) µ HVP

  14. 5/16 [plot adapted from Bulava, Fahy, BH, Juge, Morningstar, Wong 1604.05593] same data difgerent way to plot [Meyer, Wittig 1807.09370] e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, …, Dudek et al. 1212.0830, … • benchmark system for the lattice A simple (yet relevant) resonance: ρ (770) 170 4 . 0 E ∗ /m π 130 3 . 5 δ 1 / ◦ 90 3 . 0 50 2 . 5 10 2 . 0 1 u (0) 1 (1) ) 1 (2) 1 (2) 2 (2) 1 (3) ) 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 1 3 ( ( E ∗ /m π A + E + A + B + B + A + E + ⇔ T + 10 ( q cm / m π ) 3 cot δ 1 • elastic ππ scattering neglecting ℓ ≥ 3 partial wave 5 spectrum ⇔ scattering amplitude 0 − 5 − 10 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 E ∗ /m π • recent interest due to its contribution to ( g − 2) µ HVP

  15. 5/16 [plot adapted from Bulava, Fahy, BH, Juge, Morningstar, Wong 1604.05593] same data difgerent way to plot [Meyer, Wittig 1807.09370] e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, …, Dudek et al. 1212.0830, … • benchmark system for the lattice A simple (yet relevant) resonance: ρ (770) 170 4 . 0 mπ =233 MeV E ∗ /m π 130 3 . 5 δ 1 / ◦ 90 3 . 0 50 2 . 5 10 2 . 0 1 u (0) 1 (1) ) 1 (2) 1 (2) 2 (2) 1 (3) ) 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 1 3 ( ( E ∗ /m π A + E + A + B + B + A + E + ⇔ T + 10 ( q cm / m π ) 3 cot δ 1 • elastic ππ scattering neglecting ℓ ≥ 3 partial wave 5 spectrum ⇔ scattering amplitude 0 − 5 − 10 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 E ∗ /m π • recent interest due to its contribution to ( g − 2) µ HVP

  16. 5/16 [plot adapted from Bulava, Fahy, BH, Juge, Morningstar, Wong 1604.05593] same data difgerent way to plot [Meyer, Wittig 1807.09370] e.g. Lang et al. 1105.5636, Aoki et al. 1106.5365, …, Dudek et al. 1212.0830, … • benchmark system for the lattice A simple (yet relevant) resonance: ρ (770) 170 4 . 0 mπ =233 MeV E ∗ /m π 130 3 . 5 δ 1 / ◦ 90 3 . 0 50 2 . 5 10 2 . 0 1 u (0) 1 (1) ) 1 (2) 1 (2) 2 (2) 1 (3) ) 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 1 3 ( ( E ∗ /m π A + E + A + B + B + A + E + ⇔ T + 10 ( q cm / m π ) 3 cot δ 1 • elastic ππ scattering neglecting ℓ ≥ 3 partial wave 5 spectrum ⇔ scattering amplitude 0 − 5 − 10 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 E ∗ /m π • recent interest due to its contribution to ( g − 2) µ HVP

  17. 6/16 Lellouch, Lüscher hep-lat/0003023 scattering amplitude QCD requires finite volume • HVP governed by infinite volume Feng et al. 1412.6319 • two-pion state dominates at low energies Meyer 1105.1892 Matrix elements: Timelike pion form factor • muon anomalous magnetic moment ( g − 2) µ γ R had = σ ( e + e − → hadrons) / 4 πα em ( s ) 2 3 s ) 3 ( 1 − 4 m 2 2 µ µ | F π ( s ) | 2 R had ( s ) = 1 π 4 s γ ∗ → ππ | F π ( E ∗ ) | 2 = g Λ ( γ ) q ∂ ( δ 1 + F ) � 2 3 πE ∗ 2 � ⟨ 0 | V ( d , Λ) | d Λ E ∗ ⟩ � � 2 q 5 L 3 ∂q

  18. 6/16 Lellouch, Lüscher hep-lat/0003023 scattering amplitude QCD requires finite volume • HVP governed by infinite volume Feng et al. 1412.6319 • two-pion state dominates at low energies Meyer 1105.1892 Matrix elements: Timelike pion form factor • muon anomalous magnetic moment ( g − 2) µ γ R had = σ ( e + e − → hadrons) / 4 πα em ( s ) 2 3 s ) 3 ( 1 − 4 m 2 2 µ µ | F π ( s ) | 2 R had ( s ) = 1 π 4 s γ ∗ → ππ | F π ( E ∗ ) | 2 = g Λ ( γ ) q ∂ ( δ 1 + F ) � 2 3 πE ∗ 2 � ⟨ 0 | V ( d , Λ) | d Λ E ∗ ⟩ � � 2 q 5 L 3 ∂q

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend