recent progress on anti kaon nucleon interactions and
play

Recent progress on anti-kaon--nucleon interactions and dibaryon - PowerPoint PPT Presentation

Recent progress on anti-kaon--nucleon interactions and dibaryon resonances Yoichi IKEDA (RIKEN, Nishina Center) Recent progress in hadron physics --From hadrons to quark and gluon-- @Yonsei Univ., Korea, Feb.20, 2013. Outline of


  1. Recent progress on anti-kaon--nucleon interactions and dibaryon resonances Yoichi IKEDA (RIKEN, Nishina Center) “Recent progress in hadron physics” --From hadrons to quark and gluon-- @Yonsei Univ., Korea, Feb.20, 2013.

  2. Outline of lectures ✦ Chiral symmetry and chiral dynamics ‣ Chiral symmetry in QCD ‣ Chiral effective field theory (chiral perturbation theory) ‣ Antikaon - nucleon interactions and nature of Λ (1405) ✦ Antikaon in nuclei ‣ Antikaon-nucleon potentials model based on chiral dynamics ‣ Faddeev equations to handle three-body dynamics (K bar NN - π YN coupled system) ‣ Possible spectrum of K bar NN - π YN system ✦ Hadron interactions from lattice QCD ‣ Introduction to lattice QCD ‣ Hadron scattering on the lattice ‣ Application to meson-baryon scattering

  3. (3) Hadron interactions from LQCD

  4. K bar -N and K bar -nuclear physics ✓ K bar N (I=0) interaction is... ¯ π Σ : 1330[MeV] KN : 1435[MeV] • coupled with πΣ channel • strongly attractive √ s [MeV] Λ (1405) ➡ quasi-bound state of Λ (1405) • Λ (1405) is the lowest state among negative parity baryons Phenomenological construction of K bar N interaction leads to dense K bar -nuclei Central density is much larger than normal nuclei <- Λ (1405) doorway process to dense matter Akaishi, Yamazaki, PRC65 (2002). Dote, Horiuchi, Akaishi, Yamazaki, PRC70 (2004). ✓ Quest for quasi-bound K bar -NN systems • FINUDA, DISTO, J-PARC (E15, E27), ... ✓ Many theoretical studies have been motivated..., but...

  5. Overview • Binding energy and width of quasi-bound [K bar [NN] I=1 ] Variational approach [1] Akaishi, Yamazaki, B [MeV] Γ two-body input: K bar N interaction PLB535, 70 (2002); PRC76, 045201 (2007). 48 61 Phenomenological optical potential [1] [2] Dote, Hyodo, Weise, NPA804, 197 (2008); 17-23 40-70 Effective chiral SU(3) potential [2] PRC79, 014003 (2009). [3] Wycech, Green, 40-80 40-85 Phenomenological potential [3] PRC79, 014001 (2009). [4] Barnea, Gal, Liverts, 16 42 Effective chiral SU(3) potential [4] PLB712, 132 (2012). [5] Shevchenko, Gal, Coupled-channel Faddeev approach Mares, (+Revay,) PRL98, 082301 (2007); B [MeV] Γ two-body input: K bar N interaction PRC76, 044004 (2007). 50-70 90-110 Phenomenological potential [5] [6] Ikeda, Sato, PRC76, 035203 (2007); 45-80 45-75 Chiral SU(3) potential (E-indep.) [6] PRC79, 035201 (2009). [6] Ikeda, Kamano, Sato, 9-16 34-46 Chiral SU(3) potential (E-dep.) [7] PTP124, 533 (2010).

  6. Overview • Binding energy and width of quasi-bound [K bar [NN] I=1 ] Energy independent Variational approach [1] Akaishi, Yamazaki, B [MeV] Γ two-body input: K bar N interaction PLB535, 70 (2002); PRC76, 045201 (2007). 48 61 Phenomenological optical potential [1] [2] Dote, Hyodo, Weise, NPA804, 197 (2008); 17-23 40-70 Effective chiral SU(3) potential [2] PRC79, 014003 (2009). [3] Wycech, Green, 40-80 40-85 Phenomenological potential [3] PRC79, 014001 (2009). [4] Barnea, Gal, Liverts, 16 42 Effective chiral SU(3) potential [4] PLB712, 132 (2012). [5] Shevchenko, Gal, Coupled-channel Faddeev approach Mares, (+Revay,) PRL98, 082301 (2007); B [MeV] Γ two-body input: K bar N interaction PRC76, 044004 (2007). 50-70 90-110 Phenomenological potential [5] [6] Ikeda, Sato, PRC76, 035203 (2007); 45-80 45-75 Chiral SU(3) potential (E-indep.) [6] PRC79, 035201 (2009). [6] Ikeda, Kamano, Sato, 9-16 34-46 Chiral SU(3) potential (E-dep.) [7] PTP124, 533 (2010).

  7. Overview • Binding energy and width of quasi-bound [K bar [NN] I=1 ] Energy dependent Variational approach [1] Akaishi, Yamazaki, B [MeV] Γ two-body input: K bar N interaction PLB535, 70 (2002); PRC76, 045201 (2007). 48 61 Phenomenological optical potential [1] [2] Dote, Hyodo, Weise, NPA804, 197 (2008); 17-23 40-70 Effective chiral SU(3) potential [2] PRC79, 014003 (2009). [3] Wycech, Green, 40-80 40-85 Phenomenological potential [3] PRC79, 014001 (2009). [4] Barnea, Gal, Liverts, 16 42 Effective chiral SU(3) potential [4] PLB712, 132 (2012). [5] Shevchenko, Gal, Coupled-channel Faddeev approach Mares, (+Revay,) PRL98, 082301 (2007); B [MeV] Γ two-body input: K bar N interaction PRC76, 044004 (2007). 50-70 90-110 Phenomenological potential [5] [6] Ikeda, Sato, PRC76, 035203 (2007); 45-80 45-75 Chiral SU(3) potential (E-indep.) [6] PRC79, 035201 (2009). [6] Ikeda, Kamano, Sato, 9-16 34-46 Chiral SU(3) potential (E-dep.) [7] PTP124, 533 (2010).

  8. X X Importance of πΣ scattering Energy of strange dibaryon: ‣ Phenomenological potential / E-indep models --> deeply quasi-bound K bar NN state ‣ Chiral SU(3) potential models --> shallow quasi-bound K bar NN state Difference: πΣ pole position πΣ virtual pole πΣ resonance pole E-indep. model Chiral SU(3) model πΣ pole position is relevant to determine... • Nature of Λ (1405) : single resonance pole v.s. double resonance pole • Strange dibaryon energy, fate of “kaonic nuclei” How can we determine πΣ pole position? --> scattering parameter is key

  9. Threshold behavior of πΣ scattering Scattering amplitude near threshold 1 f ( k ) = kcot δ ( k ) − ik kcot δ ( k ) = 1 a + 1 ⇣ 2 r e k 2 + · · · ⌘ Low-energy scattering parameters such as length, effective range... -> nature of πΣ pole position Y.I., Hyodo, Jido, Kamano, Sato, Yazaki, PTP125 (2011). Demonstration of classification input: KN scattering length --> πΣ scattering parameters

  10. S-wave I=2 πΣ scattering on the lattice Threshold behavior of πΣ scattering Scattering amplitude near threshold 1 f ( k ) = kcot δ ( k ) − ik kcot δ ( k ) = 1 a + 1 ⇣ 2 r e k 2 + · · · ⌘ Low-energy scattering parameters such as length, effective range... -> nature of πΣ pole position Y.I., Hyodo, Jido, Kamano, Sato, Yazaki, PTP125 (2011). πΣ scattering length from Λ c decay Hyodo & Oka, PRC84 (2011). Two independent equations & three unknown valiables --> One of πΣ scattering lengths is important input ( Clear signal in I=2 πΣ scattering is expected from LQCD )

  11. Monte Calro calculation Lattice QCD L QCD = − 1 2 trF µ ν F µ ν + ¯ ψ ( i γ µ D µ − m ) ψ Path integral formalism in Euclidean space-time X X L U n, ˆ µ space a ψ ( n ) Euclidean time • Quarks : ψ (n) h O ( τ ) i = 1 Z D Ue − S g ( U ) detD ( U, m ) O ( τ ) • Gluons : U n,µ Z : Quenched QCD detD ( U, m ) = 1 : Full QCD detD ( U, m ) 6 = 1 Well defined statistical field theory Gauge invariant formalism Non-perturbative method

  12. Important limit in LQCD Quark mass ( m q --> m phys. ) Lattice QCD simulation with Lattice spacing (a --> 0) physical quark masses, finer lattice, Lattice volume ( 1/L, T --> 0 ) large volume is desirable • Physical quark (pion) mass (m phys. ) • Continuum limit (a --> 0) BMW Coll., Science (2008). PACS-CS Coll., PRD81 (2010). BMW Coll., Science (2008). • Thermodynamic limit (1/L, T --> 0): on-going 10fm 3 , phys. point, full QCD gauge configuration by PACS-CS Coll.

  13. Scattering on the lattice • Scattering parameters: X low-energy expansion of phase shift kcot δ ( k ) = 1 a − 1 2 r e k 2 + · · · X L • Relevant to resonance property X x ~ X a X x, t ) � M ( ~ X, t = 0) † � B ( ~ Y , t = 0) † | 0 i ( ~ r, t ) = h 0 | � M ( ~ x + ~ r, t ) � B ( ~ τ x, ~ X, ~ ~ Y ψ (r > R): phase shift (Luscher’s formula) M. Lüscher, NPB354, 531 (1991). (asymptotic region) --> Ozaki’s talk(Tue.) [R : interaction range] (interacting region) CP-PACS Coll., PRD71, 094504(2005). ψ (r < R): potential --> observable Ishii, Aoki, Hatsuda, PRL99, 02201 (2007).

  14. Potential method (recipe) Nambu-Bethe-Saltpeter wave function --> phase shift, T-matrix Potential defined on the lattice Baryon-Baryon, Baryon-Baryon-Baryon, Meson-Baryon, Meson-Meson, ... Many applications: nuclei, exotics, ... HAL QCD Collaboration astrophysics input... S. Aoki, B. Charron, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, K. Murano, H. Nemura, K. Sasaki

  15. Nambu-Bethe-Salpeter wave function Full details, see, Aoki, Hatsuda, Ishii, PTP123, 89 (2010). Equal-time Nambu-Bethe-Salpeter(NBS) amplitudes (e.g., ππ scattering) x 2 , t ) ⌘ h 0 | ⇡ ( x 1 ) ⇡ ( x 2 ) | ⇡ ( ~ k ) ⇡ ( � ~ Ψ ( ~ x 1 , t ; ~ k ); in i q π + ~ r ; W ) e − iW t m 2 k 2 W = 2 = ππ ( ~ At large distance r, NBS amplitudes satisfy free Klein-Gordon equations: ( @ 2 t � r 2 i + m 2 π ) Ψ ( ~ x 1 , t ; ~ x 2 , t ) = 0 ( i = 1 , 2) r + ~ ( r 2 k 2 ) ππ ( ~ r ; W ) = 0 Spatial correlation ψ (r) is NBS wave function and satisfies Helmholtz equation Asymptotic form of NBS wave function: k ( r ) ∼ e i � l ( k ) ψ ( l ) � � --> faithful to scattering phase shift sin kr + δ l ( k ) − l π / 2 ~ kr NBS wave function in quantum field theory is the best analogue to wave function in quantum mechanics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend