pad approach to pseudoscalar poles in hlbl
play

Pad approach to pseudoscalar poles in HLbL based on P. Masjuan, PS: - PowerPoint PPT Presentation

Pad approach to pseudoscalar poles in HLbL based on P. Masjuan, PS: Phys.Rev. D95 (2017) Pablo Sanchez-Puertas, Charles University Prague sanchezp@ipnp.troja.mff.cuni.cz Pad approach to pseudoscalar poles in HLbL Outline 1. A (very)


  1. Padé approach to pseudoscalar poles in HLbL based on P. Masjuan, PS: Phys.Rev. D95 (2017) Pablo Sanchez-Puertas, Charles University Prague � sanchezp@ipnp.troja.mff.cuni.cz

  2. Padé approach to pseudoscalar poles in HLbL Outline 1. A (very) brief reminder 2. Our proposal: Padé approximants 3. Application to HLbL and results 4. Summary

  3. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder Section 1 A (very) brief reminder

  4. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder Our aim: pseudoscalar poles in HLbL • We want the pseudoscalar ( π 0 , η, η ′ ) pole contributions to a HLbL µ k, ρ q 1 , µ k, ρ q 1 , µ k, ρ q 1 , µ q 1 , µ k, ρ P + ... = P P q 3 , λ q 2 , ν q 2 , ν q 3 , λ q 2 , ν q 2 , ν q 3 , λ q 3 , λ unambiguosly identified (see eg. tomorrow’s talks)

  5. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder Our aim: pseudoscalar poles in HLbL • We want the pseudoscalar ( π 0 , η, η ′ ) pole contributions to a HLbL µ off-shellness in χ PT?

  6. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder Our aim: pseudoscalar poles in HLbL • We want the pseudoscalar ( π 0 , η, η ′ ) pole contributions to a HLbL µ k, ρ q 1 , µ k, ρ q 1 , µ k, ρ q 1 , µ q 1 , µ k, ρ P + ... = P P q 3 , λ q 2 , ν q 2 , ν q 3 , λ q 2 , ν q 2 , ν q 3 , λ q 3 , λ unambiguosly identified (see eg. tomorrow’s talks) • Commonly off-shellness is coined for high-energy link q 1 , µ k, ρ k, ρ ⇒ ( q 1 − q 2 ) 2 ǫ µνρσ ( q 1 − q 2 ) ρ 4 j 5 σ q 3 , λ q 2 , ν q 3 , λ To my point of view one of the next obstacles ahead (tomorrow talks?)

  7. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2

  8. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors � + 1 � 3 � ∞ = − 2 π � α a HLbL ; P � 1 − t 2 Q 3 1 Q 3 dQ 1 dQ 2 dt ℓ 2 3 π 0 − 1 � F P γ ∗ γ ∗ ( Q 2 1 , Q 2 3 ) F P γ ∗ γ ( Q 2 + F P γ ∗ γ ∗ ( Q 2 1 , Q 2 2 ) F P γ ∗ γ ( Q 2 2 , 0 ) I 1 ( Q 1 , Q 2 , t ) 3 , 0 ) I 2 ( Q 1 , Q 2 , t ) � × Q 2 2 + m 2 Q 2 3 + m 2 P P

  9. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors � + 1 � 3 � ∞ � α a HLbL ; P = dQ 1 dQ 2 dt ( w 1 F 1 + w 2 F 2 ) ℓ π 0 − 1

  10. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors notice the peaks at the relevant low energies

  11. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors • Trivial if form factors god-given ... Mathematica not so kind yet!

  12. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors • Trivial if form factors god-given ... Mathematica not so kind yet! • Only ab-initio theoretical: lattice → finite points: interpolation!

  13. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors • Trivial if form factors god-given ... Mathematica not so kind yet! • Only ab-initio theoretical: lattice → finite points: interpolation! • Nature solves QCD for us: experiment → reduced points: extrapolation!

  14. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors • Trivial if form factors god-given ... Mathematica not so kind yet! • Only ab-initio theoretical: lattice → finite points: interpolation! • Nature solves QCD for us: experiment → reduced points: extrapolation! • A natural framework for this hihgly desired! • Framework: avoid model-building (as model-independent as possible)

  15. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors • Trivial if form factors god-given ... Mathematica not so kind yet! • Only ab-initio theoretical: lattice → finite points: interpolation! • Nature solves QCD for us: experiment → reduced points: extrapolation! • A natural framework for this hihgly desired! • Framework: avoid model-building (as model-independent as possible) • Keep track of systematic errors

  16. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors • Trivial if form factors god-given ... Mathematica not so kind yet! • Only ab-initio theoretical: lattice → finite points: interpolation! • Nature solves QCD for us: experiment → reduced points: extrapolation! • A natural framework for this hihgly desired! • Framework: avoid model-building (as model-independent as possible) • Keep track of systematic errors • Emphasize the low-energy region

  17. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors • Trivial if form factors god-given ... Mathematica not so kind yet! • Only ab-initio theoretical: lattice → finite points: interpolation! • Nature solves QCD for us: experiment → reduced points: extrapolation! • A natural framework for this hihgly desired! • Framework: avoid model-building (as model-independent as possible) • Keep track of systematic errors • Emphasize the low-energy region • Incorporate theoretical high-energy constraints

  18. Padé approach to pseudoscalar poles in HLbL A (very) brief reminder The pseudoscalar poles in brief • It amounts to calculate σ, k σ, k σ, k σ, k µ, q 1 ν, q 2 λ, q 3 µ, q 1 λ, q 3 ⇒ ν, q 2 ν, q 2 µ, q 1 λ, q 3 λ, q 3 µ, q 1 ν, q 2 • Result expressed as weighted integral over space-like on-shell form factors • Trivial if form factors god-given ... Mathematica not so kind yet! • Only ab-initio theoretical: lattice → finite points: interpolation! • Nature solves QCD for us: experiment → reduced points: extrapolation! • A natural framework for this hihgly desired! Our Proposal: use of Padé approximants

  19. Padé approach to pseudoscalar poles in HLbL Our proposal: Padé approximants Section 2 Our proposal: Padé approximants

  20. Padé approach to pseudoscalar poles in HLbL Our proposal: Padé approximants Padé approximants: singly virtual • How to approximate (not model) non-perturbative hadronic functions? Taylor series: F πγγ ∗ ( q 2 ) = F πγγ ( 1 + b P q 2 + ... ) ✗ poles(cuts)

  21. Padé approach to pseudoscalar poles in HLbL Our proposal: Padé approximants Padé approximants: singly virtual • How to approximate (not model) non-perturbative hadronic functions? c n ( q 2 − M 2 ) n � Laurent exp.: F πγγ ∗ ( q 2 ) = ✗ next pole(cuts) n = − 1

  22. Padé approach to pseudoscalar poles in HLbL Our proposal: Padé approximants Padé approximants: singly virtual • How to approximate (not model) non-perturbative hadronic functions? M = Q N ( q 2 ) 1 + b P q 2 + ... + O ( q N + M + 1 ) PAs: F πγγ ∗ ( q 2 ) = P N � � R M ( q 2 ) = F πγγ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend