chapter on analytic approaches to hlbl status report
play

Chapter on Analytic approaches to HLbL Status report Gilberto - PowerPoint PPT Presentation

Intro HLbL to ( g 2 ) Exp. input Conclusions Chapter on Analytic approaches to HLbL Status report Gilberto Colangelo ( g 2 ) Theory Initiative Seattle, 9.9.2019 Intro HLbL to ( g 2 ) Exp. input Conclusions List


  1. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions Chapter on “Analytic approaches to HLbL ” Status report Gilberto Colangelo ( g − 2 ) µ Theory Initiative Seattle, 9.9.2019

  2. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions List of authors Johan Bijnens, GC, Francesca Curciarello, Henryk Czy˙ z, Igor Danilkin, Franziska Hagelstein, Martin Hoferichter, Bastian Kubis, Andreas Nyffeler, Vladimir Pascalutsa, Elena Perez del Rio, Massimiliano Procura, Christoph Florian Redmer, Pablo Sanchez-Puertas, Peter Stoffer, Marc Vanderhaeghen

  3. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions Outline Introduction: structure of the chapter Hadronic light-by-light contribution to ( g − 2 ) µ PS-pole contribution Two-pion contributions Higher hadronic intermediate states Short-distance constraints Summary Experimental input Conclusions

  4. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions Table of content Talk by Pauk Talk by Hagelstein Session after this talk Gasparyan, Redmer Talk by Czyz

  5. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions Table of content Fischer Talks by Holz & Nyffeler Talks by Danilkin & Stoffer Talks by Kampf & Hoferichter Talks by Bijnens, Hoferichter and Laub

  6. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions Table of content

  7. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions Dispersive approaches ◮ model independent ◮ unambiguous definition of the various contributions ◮ makes a data-driven evaluation possible (in principle) ◮ if data not available: use theoretical calculations of subamplitudes, short-distance constraints etc. ◮ First attempts: GC, Hoferichter, Procura, Stoffer (14) Pauk, Vanderhaeghen (14) ◮ similar philosophy, with a different implementation: Schwinger sum rule Hagelstein, Pascalutsa (17)

  8. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary The HLbL tensor HLbL tensor: � � � Π µνλσ = i 3 � � dz e − i ( x · q 1 + y · q 2 + z · q 3 ) � 0 | T j µ ( x ) j ν ( y ) j λ ( z ) j σ ( 0 ) dx dy | 0 � k 2 = 0 q 4 = k = q 1 + q 2 + q 3 General Lorentz-invariant decomposition: � Π µνλσ = g µν g λσ Π 1 + g µλ g νσ Π 2 + g µσ g νλ Π 3 + q µ l Π 4 i q ν j q λ k q σ ijkl + . . . i , j , k , l consists of 138 scalar functions { Π 1 , Π 2 , . . . } , but in d = 4 only 136 are linearly independent Eichmann et al. (14) Constraints due to gauge invariance? (see also Eichmann, Fischer, Heupel (2015)) ⇒ Apply the Bardeen-Tung (68) method + Tarrach (75) addition

  9. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Gauge-invariant hadronic light-by-light tensor Applying the Bardeen-Tung-Tarrach method to Π µνλσ one ends up with: GC, Hoferichter, Procura, Stoffer (2015) ◮ 43 basis tensors (BT) in d = 4: 41=no. of helicity amplitudes ◮ 11 additional ones (T) to guarantee basis completeness everywhere ◮ of these 54 only 7 are distinct structures ◮ all remaining 47 can be obtained by crossing transformations of these 7: manifest crossing symmetry ◮ the dynamical calculation needed to fully determine the LbL tensor concerns these 7 scalar amplitudes 54 � Π µνλσ = T µνλσ Π i i i = 1

  10. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Master Formula � 12 � i = 1 ˆ T i ( q 1 , q 2 ; p )ˆ d 4 q 1 d 4 q 2 Π i ( q 1 , q 2 , − q 1 − q 2 ) a HLbL = − e 6 2 ( q 1 + q 2 ) 2 [( p + q 1 ) 2 − m 2 µ ][( p − q 2 ) 2 − m 2 µ ( 2 π ) 4 ( 2 π ) 4 q 2 1 q 2 µ ] ◮ ˆ T i : known kernel functions ◮ ˆ Π i : linear combinations of the Π i ◮ the Π i are amenable to a dispersive treatment: their imaginary parts are related to measurable subprocesses ◮ 5 integrals can be performed with Gegenbauer polynomial techniques GC, Hoferichter, Procura, Stoffer (2015)

  11. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Master Formula After performing the 5 integrations: � 1 � ∞ � ∞ 12 = 2 α 3 � � T i ( Q 1 , Q 2 , τ )¯ a HLbL dQ 4 dQ 4 1 − τ 2 d τ Π i ( Q 1 , Q 2 , τ ) µ 1 2 48 π 2 0 0 − 1 i = 1 where Q µ i are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta: Q 1 · Q 2 = | Q 1 || Q 2 | τ The integration variables Q 1 := | Q 1 | , Q 2 := | Q 2 | . GC, Hoferichter, Procura, Stoffer (2015)

  12. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Setting up the dispersive calculation The HLbL tensor is split as follows: Π µνλσ = Π π -pole µνλσ + ¯ µνλσ + Π π -box Π µνλσ + · · · Last diagrams = all partial waves ⇔ scalars and tensors etc. 3 π states are in . . . ⇒ axial vector resonances

  13. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Outline Introduction: structure of the chapter Hadronic light-by-light contribution to ( g − 2 ) µ PS-pole contribution Two-pion contributions Higher hadronic intermediate states Short-distance constraints Summary Experimental input Conclusions

  14. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Pion-pole contribution ◮ The pion transition form factor completely fixes this contribution Knecht-Nyffeler (01) Π 1 = F π 0 γ ∗ γ ∗ ( q 2 1 , q 2 2 ) F π 0 γ ∗ γ ∗ ( q 2 3 , 0 ) ¯ q 2 3 − M 2 π 0 ◮ Both transition form factors (TFF) must be included: [dropping one bc short-distance not correct Melnikov-Vainshtein (04) ] ◮ data on singly-virtual TFF available CELLO, CLEO, BaBar, Belle, BESIII ◮ several calculations of the transition form factors in the literature Masjuan & Sanchez-Puertas (17), Eichmann et al. (17), Guevara et al. (18) ◮ dispersive approach works here too Hoferichter et al. (18) ◮ quantity where lattice calculations can have a significant impact Gèrardin, Meyer, Nyffeler (16,19)

  15. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary PS-pole contributions B. Kubis and P . Sanchez Puertas Philosophy adopted in the section: The calculations must be model-independent and data-driven to as large an extent as possible (...) Three criteria must be fulfilled: 1. TFF normalization given by the real-photon decay widths, and high-energy constraints must be fulfilled; 2. at least the space-like experimental data for the singly-virtual TFF must be reproduced; 3. systematic uncertainties must be assessed with a reasonable procedure.

  16. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Results above the bar ◮ Dispersive calculation of the pion TFF Hoferichter et al. (18) a π 0 µ = 63 . 0 + 2 . 7 − 2 . 1 × 10 − 11 ◮ Padé-Canterbury approximants Masjuan & Sanchez-Puertas (17) a π 0 µ = 63 . 6 ( 2 . 7 ) × 10 − 11 ◮ Lattice Gérardin, Meyer, Nyffeler (19) a π 0 µ = 62 . 3 ( 2 . 3 ) × 10 − 11

  17. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Results above the bar

  18. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Results above the bar 0.07 Q 2 F π 0 γ ∗ γ ∗ ( − Q 2 , − Q 2 ) [GeV] 0.06 0.05 0.04 0.03 dispersive 0.02 Canterbury lattice 0.01 OPE limit 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Q 2 � GeV 2 �

  19. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary η - and η ′ -pole contribution ◮ Dispersive calculation not yet available → talk by S. Holz ( η - η ′ mixing, different isospin structure etc.) ◮ Less data (BaBar) ◮ Canterbury approach: µ = 16 . 3 ( 1 . 0 ) stat ( 0 . 5 ) a P ; 1 , 1 ( 0 . 9 ) sys × 10 − 11 → 16 . 3 ( 1 . 4 ) × 10 − 11 a η µ = 14 . 5 ( 0 . 7 ) stat ( 0 . 4 ) a P ; 1 , 1 ( 1 . 7 ) sys × 10 − 11 → 14 . 5 ( 1 . 9 ) × 10 − 11 a η ′

  20. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary η - and η ′ -pole contribution ( GeV - 1 ) 15 2 )× 10 - 3 10 2 , - Q 2 F ηγ * γ * (- Q 1 5 0 ( 6.5,6.5 ) ( 16.9,16.9 ) ( 14.8,4.3 ) ( 38.1,15.0 ) ( 45.6,45.6 ) 2 ,Q 2 2 ) ( GeV 2 ) ( Q 1 Data points: BaBar. Blue band: Canterbury representation.

  21. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary η - and η ′ -pole contribution Q 2 F η ' γ * γ * (- Q 2 , - Q 2 ) ( GeV ) 0.10 0.08 0.06 0.04 0.02 0.00 0 1 2 3 4 5 6 7 Q 2 ( GeV 2 ) Data points: BaBar. Blue band: Canterbury representation.

  22. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary PS-poles: conclusion Dispersive ( π 0 ) + Canterbury ( η , η ′ ): a π 0 + η + η ′ = 93 . 8 + 4 . 0 − 3 . 6 × 10 − 11 µ Canterbury: a π 0 + η + η ′ = 94 . 3 ( 5 . 3 ) × 10 − 11 µ Outlook: Dispersive evaluation of the η, η ′ contributions will give two fully independent evaluations ⇒ better control over systematics

  23. Intro HLbL to ( g − 2 ) µ Exp. input Conclusions PS -pole 2 π Higher hadrons SDC Summary Outline Introduction: structure of the chapter Hadronic light-by-light contribution to ( g − 2 ) µ PS-pole contribution Two-pion contributions Higher hadronic intermediate states Short-distance constraints Summary Experimental input Conclusions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend