gluon and ghost propagators from schwinger dyson equation
play

Gluon and Ghost Propagators from Schwinger-Dyson Equation and - PowerPoint PPT Presentation

Gluon and Ghost Propagators from Schwinger-Dyson Equation and Lattice Simulations Joannis Papavassiliou Departament of Theoretical Physics and IFIC, University of Valencia CSIC, Spain Approaches to QCD, Oberwlz, Austria, 7-13th


  1. Gluon and Ghost Propagators from Schwinger-Dyson Equation and Lattice Simulations Joannis Papavassiliou Departament of Theoretical Physics and IFIC, University of Valencia – CSIC, Spain Approaches to QCD, Oberwölz, Austria, 7-13th September 2008

  2. Outline of the talk Gauge-invariant gluon self-energy in perturbation theory Field theoretic framework: Pinch Technique Beyond perturbation theory: gauge-invariant truncation of Schwinger-Dyson equations Dynamical mass generation IR finite gluon propagator from SDE and comparison with the lattice simulations Obtaining physically meaningful quantities Conclusions

  3. � ( q ) is independent of the gauge-fixing parameter to all �� Vacuum polarization in QED (prototype) �( q 2 ) = [ 1 + �( q 2 )℄ e Π µν ( q ) = � 1 = Z + �( q 2 ) = Z A [ 1 + � 0 ( q 2 )℄ q q � 1 = 2 e = Z 2 and Z e = Z � orders � ( q 2 ) = � 0 ( q 2 ) = e 2 �( q 2 ) = ) 1 +�( q 2 ) 1 q 2 e 0 and 1 e e From QED Ward identity follows Z 1 A RG-invariant combination e 2 0

  4. � ( q ; � ) depends on the gauge-fixing parameter already �� Gluon self-energy in perturbation theory k + q k + q q q q q 1 � ( q ) = � � �� � + � 2 k k 6 = Z 2 in general) at one-loop (a) (b) Ward identities replaced by Slavnov-Taylor identities involving ghost Green’s functions. ( Z 1

  5. � � ( q ) = 0 �� Difficulty with conventional SD series q The most fundamental statement at the level of Green’s functions that one can obtain from the BRST symmetry . It affirms the transversality of the gluon self-energy and is valid both perturbatively (to all orders) as well as non-perturbatively . Any good truncation scheme ought to respect this property Naive truncation violates it

  6. � − 1 − 1 − 1 � ( q ) j 6 = 0 �� ∆ ( q ) ( a )+( b ) + 1 + 1 = = µν 2 2 µ ν ( b ) ( a ) � � ( q ) j 6 = 0 �� ( a )+( b )+( c ) + + 1 + 1 6 2 ( c ) ( d ) ( e ) q q Main reason : Full vertices satisfy complicated Slavnov-Taylor identities.

  7. " # � k � ( 0 ) � ! � ( k ) = � ( 1 � � ) k Pinch Technique �� �� Diagrammatic rearrangement of perturbative " # expansion (to all orders) gives rise to effective + n ( 0 ) � k � � k � Green’s functions with special properties . � ! � ( k ) = � n �� �� J. M. Cornwall , Phys. Rev. D 26 , 1453 (1982) J. M. Cornwall and J.P. , Phys. Rev. D 40 , 3474 (1989) D. Binosi and J.P. , Phys. Rev. D 66 , 111901 (2002). � � = ( k = + p = � m ) � ( p = � m ) � 1 In covariant gauges: � 1 i � 1 g = ( k + p ) � S ( p ) ; k 2 k 2 1 In light cone gauges: i g k 2 nk k S 0 0

  8. Pinch Technique rearrangement pinch ✲                                  pinch  ✲                                  pinch ✲ � ∆

  9. Gauge-independent self-energy + + b h � �i �( q 2 ) = + + = b � ( q ) �� + bg 2 ln � 2 = 11 C A = 48 � 2 � -function � = � bg 3 ) in the absence of quark loops. 1 q 2 q 2 1 first coefficient of the QCD b (

  10. � � � � 1 � 1 e � ( p 1 ; p 2 ) = ( p 2 ) � S ( p 1 ) � � � � � 1 � 1 e � ( q 1 ; q 2 ; q 3 ) = � ( q 2 ) � � ( q 3 ) ��� �� �� = ) easy to calculate Simple, QED-like Ward Identities , instead of Slavnov-Taylor Identities, to all orders q I g S abc gf abc I q 1 Profound connection with Background Field Method D. Binosi and J.P. , Phys. Rev. D 77 , 061702 (2008); arXiv:0805.3994 [hep-ph] � Π µν ( q ) = + q q q q Can move consistently from one gauge to another (Landau to Feynman, etc) A. Pilaftsis , Nucl. Phys. B 487 , 467 (1997)

  11. � 1 = 2 b b b = ; Z g = b b = ) RG invariant combination � 0 ( q 2 ) = g 2 �( q 2 ) Restoration of: ( � ) = 4 � � ( q 2 ) = = + bg 2 ( � ) ln ( q 2 =� 2 ) � b ln ( q 2 = � 2 ) Abelian Ward identities Z 1 Z 2 Z A g 2 0 For large momenta q 2 , define the RG-invariant effective charge of QCD, g 2 1 1 4

  12. Beyond perturbation theory ... ^ 2 d(q ) Non-perturbative effects Lattice, Schwinger-Dyson equations Asymptotic Freedom 2 q 2

  13. New SD series The new Schwinger-Dyson series based on the pinch technique − 1 ˆ − 1 ∆ ( q ) + 1 + 1 = µν µ ν 2 2 ( a 2 ) ( a 1 ) + 1 + 1 + + 6 2 ( b 2 ) ( b 1 ) ( c 1 ) ( c 2 ) + + + + ( d 1 ) ( d 2 ) ( d 3 ) ( d 4 ) Transversality is enforced separately for gluon- and ghost-loops, and order-by-order in the “dressed-loop” expansion! A. C. Aguilar and J. P. , JHEP 0612 , 012 (2006) D. Binosi and J. P. , Phys. Rev. D 77 , 061702 (2008); arXiv:0805.3994 [hep-ph].

  14. � � ( q ) j = 0 �� ( a 1 )+( a 2 ) Transversality enforced loop-wise in SD equations k k + q → → β, x σ, e ρ, c σ, d The gluonic contribution → → → → q q q q 1 1 � I Γ 2 2 µ, a ν, b µ, a ν, b q � � ( q ) j = 0 α, c �� ( b 1 )+( b 2 ρ, d ) ( a 2 ) k ← ( a 1 ) k → k + q → c c c ′ d The ghost contribution → → q → → q q q � I Γ µ, a µ, a ν, b ν, b q ( b 2 ) x x ′ k ← ( b 1 )

  15. �( q 2 ) = [ 1 + �( q 2 )℄ �( q 2 ) has a pole at q 2 = 0 the vector meson is massive , Dynamical mass generation: Schwinger mechanism in 4-d � 1 = q 2 1 q 2 If even though it is massless in the absence of interactions. J. S. Schwinger, Phys. Rev. 125 , 397 (1962); Phys. Rev. 128 , 2425 (1962). Requires massless, longitudinally coupled , Goldstone-like poles Such poles can occur dynamically , even in the absence of canonical scalar fields. Composite excitations in a strongly-coupled gauge theory. R. Jackiw and K. Johnson, Phys. Rev. D 8 , 2386 (1973) J. M. Cornwall and R. E. Norton, Phys. Rev. D 8 (1973) 3338 E. Eichten and F. Feinberg, Phys. Rev. D 10 , 3254 (1974)

  16. Ansatz for the vertex � � � e � = � + i q � ( k + q ) � � ( k ) ; ��� ��� �� �� = + + . . . + 1 /q 2 pole � � � � 1 � 1 e � ( q 1 ; q 2 ; q 3 ) = gf abc � ( q 2 ) � � ( q 3 ) ��� �� �� Gauge-technique Ansatz for the full vertex: � 1 � 1 = q 2 , instrumental for � ( 0 ) 6 = 0 I q 2 Satisfies the correct Ward identity abc q I 1 Contains longitudinally coupled massless bound-state poles

  17. Z Z � 1 � ( q 2 ) = + c 1 �( k )�( k + q ) f 1 ( q ; k ) + c 2 �( k ) f 2 ( q ; k ) � � Z ( p � k ) 2 � 1 ( p 2 ) = + c 3 � �( k ) D ( p + k ) ; System of coupled SD equations � 1 � ( 0 ) 6 = 0 q 2 k k p 2 p 2 D k 2 k Infrared finite Renormalize Solve numerically A. C. Aguilar, D. Binosi and J. P. , Phys. Rev. D 78, 025010 (2008) .

  18. Numerical results and comparison with lattice Use lattice to calibrate the SDE solution. =5.7 L=64 8 =5.7 L=72 =5.7 L=80 SDE solution = 4.5 GeV 6 ) 2 (q 4 2 0 1E-3 0,01 0,1 1 10 100 1000 2 2 q [GeV ] I. L. Bogolubsky, et al , PoS LAT2007 , 290 (2007)

  19. Ghost propagator 3,0 1,3 Ghost dressing function 2,8 Ghost dressing function lattice =5.7 SDE solution =m 2,6 =m b 1,2 b 2,4 2,2 1,1 ( p 2 ) ! constant ) ) 2,0 2 D(p ) 2 D(p 1,8 2 p 2 1,0 p 1,6 1,4 0,9 1,2 1,0 0,8 0,8 0,01 0,1 1 10 0,01 0,1 1 10 100 1000 p 2 [GeV 2 ] p 2 [GeV 2 ] In the deep IR p 2 D No power-law enhancement

  20. b �( q 2 ) and the PT-BFM �( q 2 ) are � � 2 b �( q 2 ) = + G ( q 2 ) �( q 2 ) Making contact with physical quantities The conventional related by 1 Z � � ( k � q ) 2 Formal relation derived within Batalin Vilkovisky ( q 2 ) = � C A g 2 + �( k ) D ( k + q ) : formalism D. Binosi and J. P., Phys. Rev. D 66, 025024 (2002) . ∆ Auxiliary Green’s function related G ( q ) = to the full gluon-ghost vertex D 2 G 3 k 2 q 2 k

  21. � function coefficient in front of UV logarithm. + G ( q 2 ) = 1 + 9 ( q 2 =� 2 ) 48 � 2 ln � � � 1 � ( q 2 ) = q 2 + 13 ( q 2 =� 2 ) 48 � 2 ln Enforces + C A g 2 1 4 � � � 1 b � ( q 2 ) = q 2 + 11 C A g 2 ( q 2 =� 2 ) 48 � 2 ln C A g 2 1 2 1

  22. Numerical Results 1,2 1,1 ) 2 1+G(q 1,0 0,9 0,8 1E-3 0,01 0,1 1 10 100 1000 q 2 [GeV 2 ]

  23. Numerical Results ^ ^ 28 2 2 2 d(q )= g (q ) = M Z = M 24 b 20 16 ) 2 d(q ^ 12 8 4 0 1E-3 0,01 0,1 1 10 100 1000 q 2 [GeV 2 ]

  24. b b ( q 2 ) = g 2 �( q 2 ) , has the form: ( q 2 ) b ( q 2 ) = + m 2 ( q 2 ) Physically motivated fit: Cornwall’s massive propagator � q 2 � ( q 2 ) = + 4 m 2 ( q 2 ) The RG invariant quantity, d � 2 g 2 d q 2 " # � 12 = 11 � � � � . + 4 m 2 ( q 2 ) = m 2 � 2 � 2 where the running charge is 1 g 2 b ln and the running mass q 2 4 m 2 m 2 0 0 ln ln 0 J. M. Cornwall , Phys. Rev. D 26 , 1453 (1982)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend