ghost propagators on the lattice
play

Ghost Propagators on the Lattice Faddeev-Popov Matrix in Linear - PowerPoint PPT Presentation

Ghost Propagators on the Lattice Faddeev-Popov Matrix in Linear Covariant Gauge: First Numerical Results, arXiv:1809.08224 Martin Roelfs , Attilio Cucchieri, David Dudal , Tereza Mendes, Orlando Oliveira, Paulo J. Silva KU Leuven


  1. Ghost Propagators on the Lattice Faddeev-Popov Matrix in Linear Covariant Gauge: First Numerical Results, arXiv:1809.08224 Martin Roelfs † , Attilio Cucchieri, David Dudal † , Tereza Mendes, Orlando Oliveira, Paulo J. Silva † KU Leuven Kulak, Department of Physics October 18, 2018 . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . .. . . . . .

  2. Overview Introduction 1 Gauge Fixing Gribov Problem Solution to the Gribov problem 2 Solution to the Gribov problem on the lattice 3 Extension to Linear Covariant Gauge 4 Conclusions & Outlook 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  3. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  4. Yang-Mills theory Dirac Lagrangian L Dirac = ¯ ( i / ψ ∂ − m ) ψ (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  5. Yang-Mills theory Dirac Lagrangian L Dirac = ¯ ( i / ψ ∂ − m ) ψ (1) Demand local gauge invariance: ψ → e − ig ω a ( x ) t a ψ, ψ → ¯ ¯ ψ e ig ω a ( x ) t a (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  6. Yang-Mills theory Dirac Lagrangian L Dirac = ¯ ( i / ψ ∂ − m ) ψ (1) Demand local gauge invariance: ψ → e − ig ω a ( x ) t a ψ, ψ → ¯ ¯ ψ e ig ω a ( x ) t a (2) ( e − ig ω a ( x ) t a ψ ) ∂ µ ψ → ∂ µ ≈ ∂ µ ψ − ig ∂ µ ω ( x ) (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  7. Yang-Mills theory Dirac Lagrangian L Dirac = ¯ ( i / ψ ∂ − m ) ψ (1) Demand local gauge invariance: ψ → e − ig ω a ( x ) t a ψ, ψ → ¯ ¯ ψ e ig ω a ( x ) t a (2) ( e − ig ω a ( x ) t a ψ ) ∂ µ ψ → ∂ µ ≈ ∂ µ ψ − ig ∂ µ ω ( x ) (3) We find δ L ∝ ¯ ψγ µ ∂ µ ω a ( x ) t a ψ (4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  8. Yang-Mills theory Dirac Lagrangian L Dirac = ¯ ( i / ψ ∂ − m ) ψ (1) Demand local gauge invariance: ψ → e − ig ω a ( x ) t a ψ, ψ → ¯ ¯ ψ e ig ω a ( x ) t a (2) ( e − ig ω a ( x ) t a ψ ) ∂ µ ψ → ∂ µ ≈ ∂ µ ψ − ig ∂ µ ω ( x ) (3) We find δ L ∝ ¯ ψγ µ ∂ µ ω a ( x ) t a ψ (4) Local gauge invariance could be restored by introducing a new field A µ which transforms as µ ω c + 1 δ A a µ = − f abc A b g ∂ µ ω a (5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  9. Yang-Mills theory D µ = ∂ µ + igA a µ t a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  10. Yang-Mills theory D µ = ∂ µ + igA a µ t a F µν = − i g [ D µ , D ν ] = F a µν t a F a µν = ∂ µ A a ν − ∂ ν A a µ + gf abc A b µ A c ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  11. Yang-Mills theory D µ = ∂ µ + igA a µ t a F µν = − i g [ D µ , D ν ] = F a µν t a F a µν = ∂ µ A a ν − ∂ ν A a µ + gf abc A b µ A c ν Yang-Mills Lagrangian L YM = − 1 µν F a µν + ¯ 4 F a ( i / ψ D − m ) ψ (6) ∫ ψ D ψ e i ∫ d 4 x L YM D A µ D ¯ (7) Z = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  12. (a) There are infinitely many (b) The trick is to intersect each identical gauge configurations orbit exactly once related by gauge transform Figure: Image credit 1 ∫ ∫ ∫ D ¯ D A µ ( x ) ∝ A µ ( x ) D ω ( x ) (8) 1 Antonio Duarte Pereira (2016). “Exploring new horizons of the Gribov problem in Yang-Mills theories”. PhD thesis. Niteroi, Fluminense U.. arXiv: . . . . . . . . . . . . . . . . . . . . 1607.00365 [hep-th] . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  13. Analogous to an integral ∫ d x d y e iS ( x ) Z ∝ (9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  14. Analogous to an integral ∫ d x d y e iS ( x ) Z ∝ (9) The integral over y is redundant, so we define ∫ d x d y δ ( y ) e iS ( x ) Z := (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  15. Analogous to an integral ∫ d x d y e iS ( x ) Z ∝ (9) The integral over y is redundant, so we define ∫ ∫ d x d y δ ( y ) e iS ( x ) → d x d y δ ( y − f ( x )) e iS ( x ) Z := (10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  16. Analogous to an integral ∫ d x d y e iS ( x ) Z ∝ (9) The integral over y is redundant, so we define ∫ ∫ d x d y δ ( y ) e iS ( x ) → d x d y δ ( y − f ( x )) e iS ( x ) Z := (10) if y = f ( x ) is a unique solution of some function G ( x , y ) = 0, we can write δ ( G ( x , y )) = δ ( y − f ( x )) ∂ G � � ∫ = ⇒ � � δ ( G ) d y = 1 (11) � � | ∂ G / ∂ y | ∂ y � � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  17. Analogous to an integral ∫ d x d y e iS ( x ) Z ∝ (9) The integral over y is redundant, so we define ∫ ∫ d x d y δ ( y ) e iS ( x ) → d x d y δ ( y − f ( x )) e iS ( x ) Z := (10) if y = f ( x ) is a unique solution of some function G ( x , y ) = 0, we can write δ ( G ( x , y )) = δ ( y − f ( x )) ∂ G � � ∫ = ⇒ � � δ ( G ) d y = 1 (11) � � | ∂ G / ∂ y | ∂ y � � Substituting gives � ∂ G � ∫ � δ ( G ) e iS ( x ) � � Z := (12) d x d y � � ∂ y � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  18. ∫ ψ D ψ e i ∫ D A µ D ¯ d 4 x L YM Z = All A µ related by a gauge transform h = e i ω a ( x ) t a are physically equivalent. µ = hA µ h † − i g h ( ∂ µ h † ) ≈ A µ + 1 A h g D µ ω (13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  19. ∫ ψ D ψ e i ∫ D A µ D ¯ d 4 x L YM Z = All A µ related by a gauge transform h = e i ω a ( x ) t a are physically equivalent. µ = hA µ h † − i g h ( ∂ µ h † ) ≈ A µ + 1 A h g D µ ω (13) Demand a gauge fixing condition G a [ A µ ] = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  20. ∫ ψ D ψ e i ∫ D A µ D ¯ d 4 x L YM Z = All A µ related by a gauge transform h = e i ω a ( x ) t a are physically equivalent. µ = hA µ h † − i g h ( ∂ µ h † ) ≈ A µ + 1 A h g D µ ω (13) Demand a gauge fixing condition G a [ A µ ] = 0. E.g. ∂ µ A a µ ( x ) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  21. ∫ ψ D ψ e i ∫ D A µ D ¯ d 4 x L YM Z = All A µ related by a gauge transform h = e i ω a ( x ) t a are physically equivalent. µ = hA µ h † − i g h ( ∂ µ h † ) ≈ A µ + 1 A h g D µ ω (13) Demand a gauge fixing condition G a [ A µ ] = 0. E.g. ∂ µ A a µ ( x ) = 0 ( ) ∫ δ G [ A h ] ∂ G � � ∫ D ω ( x ) δ ( G [ A h ]) � � 1 = δ ( G ) d y → 1 = det � � ∂ y δω � � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

  22. ∫ ψ D ψ e i ∫ D A µ D ¯ d 4 x L YM Z = All A µ related by a gauge transform h = e i ω a ( x ) t a are physically equivalent. µ = hA µ h † − i g h ( ∂ µ h † ) ≈ A µ + 1 A h g D µ ω (13) Demand a gauge fixing condition G a [ A µ ] = 0. E.g. ∂ µ A a µ ( x ) = 0 ( ) ∫ δ G [ A h ] ∂ G � � ∫ D ω ( x ) δ ( G [ A h ]) � � 1 = δ ( G ) d y → 1 = det � � ∂ y δω � � δ∂ µ ( A a µ ( x ) + 1 g D ac µ ω c ( x )) δ G a [ A h ( x )] = 1 g ∂ µ D ab = (14) µ δω b ( y ) δω b ( y ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ghost Propagators on the Lattice

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend