lattice points in polytopes
play

Lattice Points in Polytopes Richard P. Stanley U. Miami & - PowerPoint PPT Presentation

Lattice Points in Polytopes Richard P. Stanley U. Miami & M.I.T. A lattice polygon Georg Alexander Pick (18591942) P : lattice polygon in R 2 (vertices Z 2 , no self-intersections) Boundary and interior lattice points Picks


  1. i ( Π d , n ) Theorem. i ( Π d , n ) = ∑ d − 1 k = 0 f k ( d ) n k , where f k ( d ) = # { forests with k edges on vertices 1 ,... , d } 1 2 3 i ( Π 3 , n ) = 3 n 2 + 3 n + 1 Can be greatly generalized ( Postnikov , et al.).

  2. Application to graph theory Let G be a graph (with no loops or multiple edges) on the vertex set V ( G ) = { 1 , 2 ,... , n } . Let d i = degree (# incident edges) of vertex i . Define the ordered degree sequence d ( G ) of G by d ( G ) = ( d 1 ,... , d n ) .

  3. Example of d ( G ) Example. d ( G ) = ( 2 , 4 , 0 , 3 , 2 , 1 ) 1 2 3 4 5 6

  4. # ordered degree sequences Let f ( n ) be the number of distinct d ( G ) , where V ( G ) = { 1 , 2 ,... , n } .

  5. f ( n ) for n ≤ 4 Example. If n ≤ 3, all d ( G ) are distinct, so f ( 1 ) = 1, f ( 2 ) = 2 1 = 2, f ( 3 ) = 2 3 = 8. For n ≥ 4 we can have G ≠ H but d ( G ) = d ( H ) , e.g., 1 2 1 2 1 2 3 4 3 4 3 4 In fact, f ( 4 ) = 54 < 2 6 = 64.

  6. The polytope of degree sequences Let conv denote convex hull, and D n = conv { d ( G ) ∶ V ( G ) = { 1 ,... , n }} ⊂ R n , the polytope of degree sequences ( Perles, Koren ).

  7. The polytope of degree sequences Let conv denote convex hull, and D n = conv { d ( G ) ∶ V ( G ) = { 1 ,... , n }} ⊂ R n , the polytope of degree sequences ( Perles, Koren ). Easy fact. Let e i be the i th unit coordinate vector in R n . E.g., if n = 5 then e 2 = ( 0 , 1 , 0 , 0 , 0 ) . Then D n = Z ( e i + e j ∶ 1 ≤ i < j ≤ n ) .

  8. The Erd˝ os-Gallai theorem Theorem. Let α = ( a 1 ,... , a n ) ∈ Z n . Then α = d ( G ) for some G if and only if α ∈ D n a 1 + a 2 + ⋯ + a n is even.

  9. A generating function Enumerative techniques leads to: Theorem. Let F ( x ) f ( n ) x n = ∑ n ! n ≥ 0 1 + x + 2 x 2 2! + 8 x 3 3! + 54 x 4 4! + ⋯ . = Then:

  10. A formula for F ( x ) ⎡ ⎢ ⎢ 1 / 2 F ( x ) = 1 ( 1 + 2 ∑ n n x n n ! ) ⎢ ⎢ ⎣ 2 n ≥ 1 × ( 1 − ∑ ( n − 1 ) n − 1 x n n ! ) + 1 ] n ≥ 1 ( 0 0 = 1 ) n n − 2 x n × exp ∑ n ! n ≥ 1

  11. Coefficients of i (P , n ) Let P denote the tetrahedron with vertices ( 0 , 0 , 0 ) , ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 1 , 1 , 13 ) . Then 6 n 3 + n 2 − 1 i (P , n ) = 13 6 n + 1 .

  12. The “bad” tetrahedron y x z

  13. The “bad” tetrahedron y x z Thus in general the coefficients of Ehrhart polynomials are not “nice.” Is there a “better” basis?

  14. The h ∗ -vector of i (P , n ) Let P be a lattice polytope of dimension d . Since i (P , n ) is a polynomial of degree d , ∃ h i ∈ Z such that i (P , n ) x n = h 0 + h 1 x + ⋯ + h d x d ∑ ( 1 − x ) d + 1 . n ≥ 0

  15. The h ∗ -vector of i (P , n ) Let P be a lattice polytope of dimension d . Since i (P , n ) is a polynomial of degree d , ∃ h i ∈ Z such that i (P , n ) x n = h 0 + h 1 x + ⋯ + h d x d ∑ ( 1 − x ) d + 1 . n ≥ 0 Definition. Define h ∗ (P) = ( h 0 , h 1 ,... , h d ) , the h ∗ -vector of P .

  16. Example of an h ∗ -vector Example. Recall i (B 4 , n ) = 11340 ( 11 n 9 1 + 198 n 8 + 1596 n 7 + 7560 n 6 + 23289 n 5 + 48762 n 5 + 70234 n 4 + 68220 n 2 + 40950 n + 11340 ) .

  17. Example of an h ∗ -vector Example. Recall i (B 4 , n ) = 11340 ( 11 n 9 1 + 198 n 8 + 1596 n 7 + 7560 n 6 + 23289 n 5 + 48762 n 5 + 70234 n 4 + 68220 n 2 + 40950 n + 11340 ) . Then h ∗ (B 4 ) = ( 1 , 14 , 87 , 148 , 87 , 14 , 1 , 0 , 0 , 0 ) .

  18. Two terms of h ∗ (P) h 0 = 1 h d = (− 1 ) dim P i (P , − 1 ) = I (P)

  19. Main properties of h ∗ (P) Theorem A (nonnegativity) . ( McMullen, RS ) h i ≥ 0.

  20. Main properties of h ∗ (P) Theorem A (nonnegativity) . ( McMullen, RS ) h i ≥ 0. Theorem B (monotonicity) . ( RS ) If P and Q are lattice polytopes and Q ⊆ P , then h i ( Q ) ≤ h i ( P ) ∀ i .

  21. Main properties of h ∗ (P) Theorem A (nonnegativity) . ( McMullen, RS ) h i ≥ 0. Theorem B (monotonicity) . ( RS ) If P and Q are lattice polytopes and Q ⊆ P , then h i ( Q ) ≤ h i ( P ) ∀ i . B ⇒ A: take Q = ∅ .

  22. Proofs: the Ehrhart ring P : (convex) lattice polytope in R d with vertex set V x β = x β 1 ⋯ x β d , β ∈ Z d Ehrhart ring (over Q ): R P = Q [ x β y n ∶ β ∈ Z d , n ∈ P , β n ∈ P ] deg x β y n = n

  23. Proofs: the Ehrhart ring P : (convex) lattice polytope in R d with vertex set V x β = x β 1 ⋯ x β d , β ∈ Z d Ehrhart ring (over Q ): R P = Q [ x β y n ∶ β ∈ Z d , n ∈ P , β n ∈ P ] deg x β y n = n R P = ( R P ) 0 ⊕ ( R P ) 1 ⊕ ⋯

  24. Simple properties of R P Hilbert function of R P : H ( R P , n ) = dim Q ( R P ) n .

  25. Simple properties of R P Hilbert function of R P : H ( R P , n ) = dim Q ( R P ) n . Theorem (easy). H ( R P , n ) = i ( P , n )

  26. Simple properties of R P Hilbert function of R P : H ( R P , n ) = dim Q ( R P ) n . Theorem (easy). H ( R P , n ) = i ( P , n ) Q [ V ] : subalgebra of R P generated by x α y , α ∈ V .

  27. Simple properties of R P Hilbert function of R P : H ( R P , n ) = dim Q ( R P ) n . Theorem (easy). H ( R P , n ) = i ( P , n ) Q [ V ] : subalgebra of R P generated by x α y , α ∈ V . Theorem (easy). R P is a finitely-generated Q [ V ] -module.

  28. The Cohen-Macaulay property Theorem ( Hochster , 1972). R P is a Cohen-Macaulay ring.

  29. The Cohen-Macaulay property Theorem ( Hochster , 1972). R P is a Cohen-Macaulay ring. This means (using finiteness of R P over Q [ V ] ): if dim P = m then there exist algebraically independent θ 1 ,... ,θ m ∈ ( R P ) 1 such that R P is a finitely-generated free Q [ θ 1 ,... ,θ m ] -module. θ 1 ,... ,θ m is a homogeneous system of parameters ( h.s.o.p. ).

  30. The Cohen-Macaulay property Theorem ( Hochster , 1972). R P is a Cohen-Macaulay ring. This means (using finiteness of R P over Q [ V ] ): if dim P = m then there exist algebraically independent θ 1 ,... ,θ m ∈ ( R P ) 1 such that R P is a finitely-generated free Q [ θ 1 ,... ,θ m ] -module. θ 1 ,... ,θ m is a homogeneous system of parameters ( h.s.o.p. ). Thus R P = ⊕ r j = 1 η j Q [ θ 1 ,... ,θ m ] , where η j ∈ ( R P ) e j .

  31. The Cohen-Macaulay property Theorem ( Hochster , 1972). R P is a Cohen-Macaulay ring. This means (using finiteness of R P over Q [ V ] ): if dim P = m then there exist algebraically independent θ 1 ,... ,θ m ∈ ( R P ) 1 such that R P is a finitely-generated free Q [ θ 1 ,... ,θ m ] -module. θ 1 ,... ,θ m is a homogeneous system of parameters ( h.s.o.p. ). Thus R P = ⊕ r j = 1 η j Q [ θ 1 ,... ,θ m ] , where η j ∈ ( R P ) e j . x n = x e 1 + ⋯ + x e r , so h ∗ ( P ) ≥ 0. Corollary. ∑ n ≥ 0 H ( R P , n ) ( 1 − x ) m �ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ�ÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜÜ� i (P , n )

  32. Monotonicity The result Q ⊆ P ⇒ h ∗ ( Q ) ≤ h ∗ ( P ) is proved similarly. We have R Q ⊂ R P . The key fact is that we can find an h.s.o.p. θ 1 ,... ,θ k for R Q that extends to an h.s.o.p. for R P .

  33. The canonical module Let R = R 0 ⊕ R 1 ⊕ ⋯ be a Cohen-Macaulay graded algebra over a field K = R 0 , with Krull dimension m and Hilbert series ( dim K R n ) x n = ∑ r j = 1 x e j ∑ ( 1 − x d 1 ) ⋯ ( 1 − x d m ) . n ≥ 0 Let R ≅ A / I , where A = K [ x 1 ,... , x t ] .

  34. The canonical module Let R = R 0 ⊕ R 1 ⊕ ⋯ be a Cohen-Macaulay graded algebra over a field K = R 0 , with Krull dimension m and Hilbert series ( dim K R n ) x n = ∑ r j = 1 x e j ∑ ( 1 − x d 1 ) ⋯ ( 1 − x d m ) . n ≥ 0 Let R ≅ A / I , where A = K [ x 1 ,... , x t ] . canonical module : Ω ( R ) = Ext t − m ( R , A ) , a graded R -module. A

  35. Reciprocity redux Basic result in commutative/homological algebra: x c ∑ r ( dim K Ω ( R ) n ) x n = j = 1 x − e j ∑ ( 1 − x d 1 ) ⋯ ( 1 − x d m ) . n ≥ 0

  36. Reciprocity redux Basic result in commutative/homological algebra: x c ∑ r ( dim K Ω ( R ) n ) x n = j = 1 x − e j ∑ ( 1 − x d 1 ) ⋯ ( 1 − x d m ) . n ≥ 0 Theorem. Ω ( R P ) = span Q { x β y n ∶ β ∈ Z d , n ∈ P , β n ∈ interior ( P )}

  37. Reciprocity redux Basic result in commutative/homological algebra: x c ∑ r ( dim K Ω ( R ) n ) x n = j = 1 x − e j ∑ ( 1 − x d 1 ) ⋯ ( 1 − x d m ) . n ≥ 0 Theorem. Ω ( R P ) = span Q { x β y n ∶ β ∈ Z d , n ∈ P , β n ∈ interior ( P )} i ( P , n ) = ( − 1 ) d i ( P , n ) . Corollary. ¯

  38. Further properties: I. Brion’s theorem Example. Let P be the polytope [ 2 , 5 ] in R , so P is defined by ( 1 ) x ≥ 2 , ( 2 ) x ≤ 5 .

  39. Further properties: I. Brion’s theorem Example. Let P be the polytope [ 2 , 5 ] in R , so P is defined by ( 1 ) x ≥ 2 , ( 2 ) x ≤ 5 . Let t n = t 2 = F 1 ( t ) ∑ 1 − t n ≥ 2 n ∈ Z t n = t 5 = F 2 ( t ) ∑ 1 − 1 . n ≤ 5 t n ∈ Z

  40. F 1 ( t ) + F 2 ( t ) F 1 ( t ) + F 2 ( t ) 1 − t + t 2 t 5 = 1 − 1 t 2 + t 3 + t 4 + t 5 t = = t m . ∑ m ∈P∩ Z

  41. Cone at a vertex P : Z -polytope in R N with vertices v 1 ,... , v k C i : cone at vertex v i supporting P

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend