h polynomials of dilated lattice polytopes
play

h -polynomials of dilated lattice polytopes Katharina Jochemko KTH - PowerPoint PPT Presentation

h -polynomials of dilated lattice polytopes Katharina Jochemko KTH Stockholm Einstein Workshop Discrete Geometry and Topology, March 13, 2018 Lattice polytopes A set P R d is a lattice polytope if there are x 1 , . . . , x m Z d with


  1. h ∗ -polynomials of dilated lattice polytopes Katharina Jochemko KTH Stockholm Einstein Workshop Discrete Geometry and Topology, March 13, 2018

  2. Lattice polytopes A set P ⊂ R d is a lattice polytope if there are x 1 , . . . , x m ∈ Z d with P = conv { x 1 , . . . , x m } .

  3. Ehrhart theory The lattice point enumerator or discrete volume of P is � . � � P ∩ Z d � E( P ) := n = 1 n = 2 n = 3 E( nP ) = ( n + 1) 2 .

  4. Ehrhart theory Theorem (Ehrhart’62) For every lattice polytope P in R d E P ( n ) := | nP ∩ Z d | agrees with a polynomial of degree dim P for n ≥ 1 . E P ( n ) is called the Ehrhart polynomial of P . Various combinatorial applications , i.e. ◮ posets (order preserving maps), ◮ graph colorings,... Central Questions ◮ Which polynomials are Ehrhart polynomials? ◮ Interpretation of coefficients ◮ roots, ...

  5. Ehrhart series and h ∗ -polynomial Ehrhart series The Ehrhart series of an d -dimensional lattice polytope P ⊂ R d is defined by h ∗ 0 + h ∗ 1 t + · · · + h ∗ d t d � E P ( n ) t n = . (1 − t ) d +1 n ≥ 0 The numerator polynomial h ∗ P ( t ) is the h ∗ -polynomial of P . The vector h ∗ ( P ) := ( h ∗ 0 , . . . , h ∗ d ) is the h ∗ -vector .

  6. Ehrhart series and h ∗ -polynomial Ehrhart series The Ehrhart series of an d -dimensional lattice polytope P ⊂ R d is defined by h ∗ 0 + h ∗ 1 t + · · · + h ∗ d t d � E P ( n ) t n = . (1 − t ) d +1 n ≥ 0 The numerator polynomial h ∗ P ( t ) is the h ∗ -polynomial of P . The vector h ∗ ( P ) := ( h ∗ 0 , . . . , h ∗ d ) is the h ∗ -vector . h ∗ -vector and coefficients of E P ( n ) Expansion into a binomial basis: � n + r � � n + r − 1 � � n � E P ( n ) = h ∗ + h ∗ + · · · + h ∗ . 0 1 d r r r

  7. Inequalities for the h ∗ -vector Theorem (Stanley ’80) For every lattice polytope P in R d with h ∗ P = h ∗ 0 + h ∗ 1 t + · · · + h ∗ d t d h ∗ i ≥ 0 for all 0 ≤ i ≤ d. Question : Are there stronger inequalities for certain classes of polytopes? Such as... ◮ ...Unimodality : h ∗ 0 ≤ h ∗ 1 ≤ · · · ≤ h ∗ k ≥ · · · ≥ h ∗ d for some k ◮ ...Log-concavity : k ) 2 ≥ h ∗ ( h ∗ k − 1 h ∗ k +1 for all k ◮ ...Real-rootedness : h ∗ P = h ∗ 0 + h ∗ 1 t + · · · + h ∗ d t d has only real roots

  8. IDP polytopes Conjecture (Stanley ’89) Every IDP polytope has a unimodal h ∗ -vector. A lattice polytope P ⊂ R d has the integer decomposition property (IDP) if for all integers n ≥ 1 and all p ∈ nP ∩ Z d p = p 1 + · · · + p n for some p 1 , . . . , p n ∈ P ∩ Z d . Examples ◮ unimodular simplex ◮ lattice parallelepiped ◮ lattice zonotope ◮ rP whenever r ≥ dim P − 1 (Bruns, Gubeladze, Trung ’97)

  9. Dilated lattice polytopes Theorem (Brenti, Welker ’09; Diaconis, Fulman ’09; Beck, Stapledon ’10) Let P be a d-dimensional lattice polytope. Then there is an N such that the h ∗ -polynomial of rP has only real roots for r ≥ N. Conjecture (Beck, Stapledon ’10) Let P be a d-dimensional lattice polytope. Then the h ∗ -polynomial of rP has only real-roots whenever r ≥ d. Theorem (Higashitani ’14) Let P be a d-dimensional lattice polytope. Then the h ∗ -polynomial of rP has log-concave coefficients whenever r ≥ deg h ∗ P . Theorem (J. ’16) Let P be a d-dimensional lattice polytope. Then the h ∗ -polynomial of rP has only real roots whenever r ≥ deg h ∗ P .

  10. Interlacing polynomials ◮ Proof of Kadison-Singer-Problem from 1959 (Marcus, Spielman, Srivastava ’15) ◮ Real-rootedness of independence polynomials of claw-free graphs (Chudnowski, Seymour ’07) compatible polynomials, common interlacers ◮ Real-rootedness of s -Eulerian polynomials (Savage, Visontai ’15) h ∗ -polynomial of s -Lecture hall polytopes are real-rooted Further literature: Br¨ anden ’14, Fisk ’08, Braun ’15

  11. Interlacing polynomials

  12. Interlacing polynomials Definition Let a , b , t 1 , . . . , t n , s 1 , . . . , s m ∈ R . Then f = a � m i =1 ( t − s i ) interlaces g = b � n i =1 ( t − t i ) and we write f � g if · · · ≤ s 2 ≤ t 2 ≤ s 1 ≤ t 1 Properties ◮ f � g if and only if cf � dg for all c , d � = 0. ◮ deg f ≤ deg g ≤ deg f + 1 ◮ α f + β g real-rooted for all α, β ∈ R

  13. Interlacing polynomials

  14. Polynomials with only nonpositive, real roots Lemma (Wagner ’00) Let f , g , h ∈ R [ t ] be real-rooted polynomials with only nonpositive, real roots and positive leading coefficients. Then (i) if f � h and g � h then f + g � h. (ii) if h � f and h � g then h � f + g. (iii) g � f if and only if f � tg.

  15. Interlacing sequences of polynomials Definition A sequence f 1 , . . . , f m is called interlacing if f i � f j whenever i ≤ j . Lemma Let f 1 , . . . , f m be an interlacing polynomials with only nonnegative coefficients. Then c 1 f 1 + c 2 f 2 + · · · + c m f m is real-rooted for all c 1 , . . . , c m ≥ 0 .

  16. Interlacing sequences of polynomials

  17. Constructing interlacing sequences Proposition (Fisk ’08; Savage, Visontai ’15) Let f 1 , · · · , f m be a sequence of interlacing polynomials with only negative roots and positive leading coefficients. For all 1 ≤ l ≤ m let g l = tf 1 + · · · + tf l − 1 + f l + · · · + f m . Then also g 1 , · · · , g m are interlacing, have only negative roots and positive leading coefficients.

  18. Linear operators preserving interlacing sequences Let F n + the collection of all interlacing sequences of polynomials with only nonnegative coefficients of length n . When does a matrix G = ( G i , j ( t )) ∈ R [ t ] m × n map F n + to F m + by G · ( f 1 , . . . , f n ) T ? Theorem (Br¨ and´ en ’15) Let G = ( G i , j ( t )) ∈ R [ t ] m × n . Then G : F n + → F m + if and only if (i) ( G i , j ( t )) has nonnegative entries for all i ∈ [ n ] , j ∈ [ m ] , and (ii) For all λ, µ > 0 , 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n ( λ t + µ ) G k , j ( t ) + G l , j ( t ) � ( λ t + µ ) G k , i ( t ) + G l , i ( t ) .

  19. Example  · · ·  1 1 1 1 t 1 1 · · · 1     t t 1 · · · 1 ∈ R [ x ] ( n +1) × n    . . .  . . .   . . .   t t · · · t t (i) All entries have nonnegative coefficients � Submatrices: i j � � � � � � � � � � k G k , i ( t ) G k , j ( t ) 1 1 1 1 t 1 t t M = : l G l , i ( t ) G l , j ( t ) 1 1 t 1 t t t t (ii) ( λ t + µ ) G k , j ( t ) + G l , j ( t ) � ( λ t + µ ) G k , i ( t ) + G l , i ( t ) ( λ + 1) t + µ = ( λ t + µ ) · 1 + t � ( λ t + µ ) t + t = ( λ t + µ + 1) t �

  20. Dilated lattice polytopes

  21. Dilation operator For f ∈ R [[ t ]] and an integer r ≥ 1 there are uniquely determined f 0 , . . . , f r − 1 ∈ R [[ t ]] such that f ( t ) = f 0 ( t r ) + tf 1 ( t r ) + · · · + t r − 1 f r − 1 ( t r ) . For 0 ≤ i ≤ r − 1 we define f � r , i � = f i . Example: r = 2 1 + 3 t + 5 t 2 + 7 t 3 + t 5 Then f 1 = 3 + 7 t + t 2 f 0 = 1 + 5 t In particular, for all lattice polytopes P and all integers r ≥ 1 � r , 0 �   E rP ( n ) t n = � � E P ( n ) t n  n ≥ 0 n ≥ 0

  22. h ∗ -polynomials of dilated polytopes Lemma (Beck, Stapledon ’10) Let P be a d-dimensional lattice polytope and r ≥ 1 . Then � � r , 0 � . h ∗ h ∗ P ( t )(1 + t + · · · + t r − 1 ) d +1 d � rP ( t ) = Equivalently, for h ∗ P =: h rP ( t ) = h � r , 0 � a � r , 0 � d +1 + h � r , 1 � ta � r , r − 1 � + · · · + h � r , r − 1 � ta � r , 1 � h ∗ d +1 , d +1 where (1 + t + · · · + t r − 1 ) d � � r , i � a � r , i � � ( t ) := d for all r ≥ 1 and all 0 ≤ i ≤ r − 1.

  23. h ∗ rP ( t ) = (1 − t ) d +1 � E rP ( n ) t n n ≥ 0 � r , 0 �   � = (1 − t ) d +1 E P ( n ) t n  n ≥ 0 � r , 0 �    (1 − t r ) d +1 � E P ( n ) t n =  n ≥ 0 � r , 0 �    (1 + t + · · · + t r − 1 ) d +1 (1 − t ) d +1 � E P ( n ) t n =  n ≥ 0 � � r , 0 � (1 + t + · · · + t r − 1 ) d +1 h ∗ � = P ( t )

  24. Another operator preserving interlacing... Proposition (Fisk ’08) Let f be a polynomial such that f � r , r − 1 � , . . . , f � r , 1 � , f � r , 0 � is an interlacing sequence. Let g ( t ) = (1 + t + · · · + t r − 1 ) f ( t ) . Then also g � r , r − 1 � , . . . , g � r , 1 � , g � r , 0 � is an interlacing sequence. Observation:  · · ·  1 1 1 1 g � r , r − 1 � f � r , r − 1 �     t 1 1 · · · 1 .   . . .       t t 1 · · · 1 . .  =          . . .    g � r , 1 � ... f � r , 1 � . . .      . . . g � r , 0 �   f � r , 0 � t t · · · t 1 Corollary The polynomials a � r , r − 1 � ( t ) , . . . , a � r , 1 � ( t ) , a � r , 0 � ( t ) form an interlacing d d d sequence of polynomials.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend