lattice simplices of bounded degree
play

Lattice Simplices of Bounded Degree Einstein Workshop on Lattice - PowerPoint PPT Presentation

Lattice Simplices of Bounded Degree Einstein Workshop on Lattice Polytopes 2016 Johannes Hofscheier Otto-von-Guericke-Universit at Magdeburg joint with Akihiro Higashitani Tuesday 13 December 2016 Motivation LLS LSD Deg. 2 Appl. Basic


  1. Lattice Simplices of Bounded Degree Einstein Workshop on Lattice Polytopes 2016 Johannes Hofscheier Otto-von-Guericke-Universit¨ at Magdeburg joint with Akihiro Higashitani Tuesday 13 December 2016

  2. Motivation LLS LSD Deg. 2 Appl. Basic Definitions Lattice polytope : P = conv( v 1 , . . . , v n ) ⊆ R d where v i ∈ Z d . � � � kP ∩ Z d � � � ( k ∈ Z ≥ 0 ). Ehrhart polynomial : L P ( k ) := h ∗ h ∗ -polynomial : � k ≥ 0 L P ( k ) t k = P ( t ) (1 − t ) d +1 for h ∗ P ∈ Z ≥ 0 [ t ] . degree of P : deg( P ) = deg h ∗ P ( t ) . Johannes Hofscheier LSD

  3. Motivation LLS LSD Deg. 2 Appl. Motivation Question A What are the polynomials which can be interpreted as the h ∗ -polynomial of a lattice polytope? Johannes Hofscheier LSD

  4. Motivation LLS LSD Deg. 2 Appl. Linear Polynomials P = [0 , a ] ⊆ R ( a ∈ Z ) L P (0) = 1 Johannes Hofscheier LSD

  5. Motivation LLS LSD Deg. 2 Appl. Linear Polynomials P = [0 , a ] ⊆ R ( a ∈ Z ) L P (0) = 1 , L P (1) = a + 1 Johannes Hofscheier LSD

  6. Motivation LLS LSD Deg. 2 Appl. Linear Polynomials P = [0 , a ] ⊆ R ( a ∈ Z ) L P (0) = 1 , L P (1) = a + 1 , L P (2) = 2 a + 1 Johannes Hofscheier LSD

  7. Motivation LLS LSD Deg. 2 Appl. Linear Polynomials P = [0 , a ] ⊆ R ( a ∈ Z ) L P (0) = 1 , L P (1) = a + 1 , L P (2) = 2 a + 1 , L P (3) = 3 a + 1 , . . . Johannes Hofscheier LSD

  8. Motivation LLS LSD Deg. 2 Appl. Linear Polynomials P = [0 , a ] ⊆ R ( a ∈ Z ) L P (0) = 1 , L P (1) = a + 1 , L P (2) = 2 a + 1 , L P (3) = 3 a + 1 , . . . ⇒ L P ( k ) = ka + 1 � � � ( ka + 1) t k = a kt k + t k = a t 1 (1 − t ) 2 + 1 − t k ≥ 0 k ≥ 0 k ≥ 0 = ( a − 1) t +1 ⇒ h ∗ P ( t ) = ( a − 1) t + 1 . (1 − t ) 2 Degree 1 All lin. polynomials 1 + at ∈ Z 2 ≥ 0 [ t ] can be interpreted as h ∗ -vectors. Johannes Hofscheier LSD

  9. Motivation LLS LSD Deg. 2 Appl. Quadratic Polynomials Degree 2 [Henk & Tagami, Treutlein] All polynomials 1 + a 1 t + a 2 t 2 ∈ Z ≥ 0 [ t ] with � 7 if a 2 = 1 a 1 ≤ 3 a 2 + 3 if a 2 ≥ 2 can be interpreted as h ∗ -polynomials. (Need polytopes up to dimension 3 .) Johannes Hofscheier LSD

  10. Motivation LLS LSD Deg. 2 Appl. Simpler Question Question B What are the h ∗ -polynomials coming from lattice simplices ? Johannes Hofscheier LSD

  11. Motivation LLS LSD Deg. 2 Appl. Question B: Degree 1 All lin. polynomials 1 + at ∈ Z ≥ 0 [ t ] can be interpreted as h ∗ -polynomials of lattice simplices. Johannes Hofscheier LSD

  12. Motivation LLS LSD Deg. 2 Appl. Question B: Degree 2 Interpret h ∗ = 1 + a 1 t + a 2 t 2 ∈ Z ≥ 0 [ t ] as point in the positive orthant a = ( a 1 , a 2 ) ∈ R 2 ≥ 0 . P ( t )=1+ a 1 t + a 2 t 2 for lattice triangle P ⊆ R 2 } M := { a ∈ Z 2 ≥ 0 : h ∗ Proposition[H.,Nill,Oeberg] There is a family ( σ i ) i ∈ Z ≥ 0 of affine cones σ i ⊆ R 2 ≥ 0 such that M ∩ σ ◦ i = ∅ for all i . Johannes Hofscheier LSD

  13. Motivation LLS LSD Deg. 2 Appl. Question B: Degree 2 250 σ 0 200 150 σ 3 h ∗ 2 σ 2 100 50 σ 1 0 0 50 100 150 200 250 h ∗ 1 Johannes Hofscheier LSD

  14. Motivation LLS LSD Deg. 2 Appl. Simplices of given degree Question C What are the simplices of a given degree (any dimension)? Idea: Question C ⇒ Question B. Johannes Hofscheier LSD

  15. Motivation LLS LSD Deg. 2 Appl. Idea from Alg. Geom. Alg. Geometer are interested in M g,n = { smooth proj. curves C of genus g with n distinct marked points } / ∼ Johannes Hofscheier LSD

  16. Motivation LLS LSD Deg. 2 Appl. Idea from Alg. Geom. Alg. Geometer are interested in M g,n = { smooth proj. curves C of genus g with n distinct marked points } / ∼ Completeness is a desirable property. For a (possible) compactification, relax the smoothness condition M g,n = { proj. connected nodal curves C of genus g with n distinct, nonsing. marked points with a stability condition } / ∼ Johannes Hofscheier LSD

  17. Motivation LLS LSD Deg. 2 Appl. “Moduli” of Lattice Simplices We are interested in M 0 ,s = { lattice simplices ∆ of deg. s with marked vertices } / ∼ Here “ ∼ ” means: “up to affine unimodular transformations”. Johannes Hofscheier LSD

  18. Motivation LLS LSD Deg. 2 Appl. “Moduli” of Lattice Simplices We are interested in M 0 ,s = { lattice simplices ∆ of deg. s with marked vertices } / ∼ Here “ ∼ ” means: “up to affine unimodular transformations”. “genus 0 ” as a simplex is homeomorphic to a sphere. Johannes Hofscheier LSD

  19. Motivation LLS LSD Deg. 2 Appl. “Moduli” of Lattice Simplices We are interested in M 0 ,s = { lattice simplices ∆ of deg. s with marked vertices } / ∼ Here “ ∼ ” means: “up to affine unimodular transformations”. “genus 0 ” as a simplex is homeomorphic to a sphere. Question What could be M 0 ,s ? Johannes Hofscheier LSD

  20. Motivation LLS LSD Deg. 2 Appl. Recall Definition Usually: ∆ = conv( v 1 , . . . , v d +1 ) ⊆ R d d -dimensional lattice simplex if v i ∈ Z d (aff. indep.) Johannes Hofscheier LSD

  21. Motivation LLS LSD Deg. 2 Appl. Recall Definition Usually: ∆ = conv( v 1 , . . . , v d +1 ) ⊆ R d d -dimensional lattice simplex if v i ∈ Z d (aff. indep.) Lattice stays the same: Z d . Johannes Hofscheier LSD

  22. Motivation LLS LSD Deg. 2 Appl. Recall Definition Usually: ∆ = conv( v 1 , . . . , v d +1 ) ⊆ R d d -dimensional lattice simplex if v i ∈ Z d (aff. indep.) Lattice stays the same: Z d . Vertices change: v 1 , . . . , v d +1 . Johannes Hofscheier LSD

  23. Motivation LLS LSD Deg. 2 Appl. Recall Definition Usually: ∆ = conv( v 1 , . . . , v d +1 ) ⊆ R d d -dimensional lattice simplex if v i ∈ Z d (aff. indep.) Lattice stays the same: Z d . Vertices change: v 1 , . . . , v d +1 . Idea Let’s do it vice versa. Lattice changes: Λ . Vertices stay the same: What is a good choice? Johannes Hofscheier LSD

  24. Motivation LLS LSD Deg. 2 Appl. Lattice of a Lattice Simplex From now on: e 1 , . . . , e d ∈ R d standard basis vectors. All vertices should be “equivalent” � bad choice: 0 , e 1 , . . . , e d . Better choice: e 1 , . . . , e d +1 ∈ R d +1 (Dimension increases by 1 ). Johannes Hofscheier LSD

  25. Motivation LLS LSD Deg. 2 Appl. Lattice of a Lattice Simplex ∆ = conv( v 1 , . . . , v d +1 ) ⊆ R d d -dimensional lattice simplex. Cone over ∆ C = cone( { 1 } × ∆) ⊆ R d +1 . Exists unique linear iso. ϕ : R d +1 → R d +1 with (1 , v i ) �→ e i . ϕ (∆) = conv( e 1 , . . . , e d +1 ) Λ ∆ := ϕ ( Z d +1 ) ⊆ R d lattice Johannes Hofscheier LSD

  26. Motivation LLS LSD Deg. 2 Appl. Example ∆ = conv( 0 , 2 e 1 , 2 e 2 ) ⊆ R 2 � 1 − 1 / 2 − 1 / 2 � � 1 1 1 � 1 0 0 � � = 0 1 / 2 0 0 2 0 0 1 0 0 0 2 0 0 1 0 0 1 / 2 � �� � ϕ � − 1 � − 1 � � 2 2 Λ ∆ = Z 3 + Z + Z 1 0 1 2 0 2 Johannes Hofscheier LSD

  27. Motivation LLS LSD Deg. 2 Appl. Example ∆ = conv( 0 , 2 e 1 , 2 e 2 ) ⊆ R 2 � 1 − 1 / 2 − 1 / 2 � � 1 1 1 � 1 0 0 � � = 0 1 / 2 0 0 2 0 0 1 0 0 0 2 0 0 1 0 0 1 / 2 � �� � ϕ � − 1 � − 1 � � � � 2 2 Λ ∆ = Z 3 + Z − 1 / 2 1 / 2 0 + Z � short: 1 0 − 1 / 2 0 1 / 2 1 2 0 2 Johannes Hofscheier LSD

  28. Motivation LLS LSD Deg. 2 Appl. Properties of Λ ∆ Proposition ∆ = conv( v 1 , . . . , v d +1 ) ⊆ R d d -dim. lattice simplex. ϕ : R d +1 �→ R d +1 ; ϕ (1 , v i ) = e i . Λ ∆ = ϕ � Z d +1 � . 1 Z d +1 ⊆ Λ ∆ � � x ∈ R d +1 : � d +1 2 Λ ∆ ⊆ i =1 x i ∈ Z . Johannes Hofscheier LSD

  29. Motivation LLS LSD Deg. 2 Appl. Properties of Λ ∆ Proposition ∆ = conv( v 1 , . . . , v d +1 ) ⊆ R d d -dim. lattice simplex. ϕ : R d +1 �→ R d +1 ; ϕ (1 , v i ) = e i . Λ ∆ = ϕ � Z d +1 � . 1 Z d +1 ⊆ Λ ∆ � � x ∈ R d +1 : � d +1 2 Λ ∆ ⊆ i =1 x i ∈ Z . Idea of Proof: 1 v i ∈ Z d ⇒ Z d +1 ⊆ Λ ∆ ϕ − → 2 ∆ ϕ (∆) Johannes Hofscheier LSD

  30. Motivation LLS LSD Deg. 2 Appl. Correspondence Definition A lattice Λ ∆ ⊆ R d +1 we call simplicial if 1 Z d +1 ⊆ Λ ∆ . � � x ∈ R d +1 : � d +1 2 Λ ∆ ⊆ i =1 x i ∈ Z . Johannes Hofscheier LSD

  31. Motivation LLS LSD Deg. 2 Appl. Correspondence Definition A lattice Λ ∆ ⊆ R d +1 we call simplicial if 1 Z d +1 ⊆ Λ ∆ . � � x ∈ R d +1 : � d +1 2 Λ ∆ ⊆ i =1 x i ∈ Z . Theorem The assignment ∆ �→ Λ ∆ induces a bijection � d -dim. lattice sim- � � simplicial lattices � / ∼ 1 ↔ / ∼ 2 plices ∆ ⊆ R d Λ ⊆ R d +1 1 ∼ 1 = up to affine unimodular equivalence 2 ∼ 2 = up to permutation of the coordinates Johannes Hofscheier LSD

  32. Motivation LLS LSD Deg. 2 Appl. Chabauty Topology C ℓ := { C ⊆ X closed subgroup } � � x ∈ R d +1 : � d +1 ⊆ R d +1 closed subgp. X := i =1 x i ∈ Z Johannes Hofscheier LSD

  33. Motivation LLS LSD Deg. 2 Appl. Chabauty Topology C ℓ := { C ⊆ X closed subgroup } � � x ∈ R d +1 : � d +1 ⊆ R d +1 closed subgp. X := i =1 x i ∈ Z Chabauty topology Basis of neighborhoods of C ∈ C ℓ N K,U ( C ) where K ⊆ X compact and U ⊆ X open with 0 ∈ U . Johannes Hofscheier LSD

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend