some 0 1 polytopes need exponential size extended
play

Some 0 / 1 polytopes need exponential size extended formulations - PowerPoint PPT Presentation

Some 0 / 1 polytopes need exponential size extended formulations Thomas Rothvo Department of Mathematics, M.I.T. b b b 0 / 1 polytopes conv( X ) with X { 0 , 1 } n P = (1 , 1) P (0 , 0) (1 , 0) b b b 0 / 1 polytopes conv( X ) with


  1. Some 0 / 1 polytopes need exponential size extended formulations Thomas Rothvoß Department of Mathematics, M.I.T.

  2. b b b 0 / 1 polytopes conv( X ) with X ⊆ { 0 , 1 } n P = (1 , 1) P (0 , 0) (1 , 0)

  3. b b b 0 / 1 polytopes conv( X ) with X ⊆ { 0 , 1 } n P = → exponential! (1 , 1) P (0 , 0) (1 , 0)

  4. b b b 0 / 1 polytopes conv( X ) with X ⊆ { 0 , 1 } n P = → exponential! { x ∈ R n | Ax ≤ b } = (1 , 1) P (0 , 0) (1 , 0)

  5. b b b 0 / 1 polytopes conv( X ) with X ⊆ { 0 , 1 } n P = → exponential! { x ∈ R n | Ax ≤ b } = → exponential! (1 , 1) P (0 , 0) (1 , 0)

  6. b b b 0 / 1 polytopes conv( X ) with X ⊆ { 0 , 1 } n P = → exponential! { x ∈ R n | Ax ≤ b } = → exponential! (1 , 1) P (0 , 0) (1 , 0)

  7. b b b b b b b b b b b b b b b b b 0 / 1 polytopes conv( X ) with X ⊆ { 0 , 1 } n P = → exponential! { x ∈ R n | Ax ≤ b } = → exponential! = p ( Q ) → can be polynomial ◮ p : R n + k → R n linear projection ◮ Q = { ( x, y ) | Bx + Cy ≤ c } Q (1 , 1) P (0 , 0) (1 , 0)

  8. b b b b b b b b b b b b b b b b b Extension complexity Definition Extension complexity:   Q polyhedron   xc( P ) := min  #facets of Q | p linear projection  p ( Q ) = P Q p P

  9. b b b b b b b b b b b b b b b b b Extension complexity Definition Extension complexity:   Q polyhedron   xc( P ) := min  #facets of Q | p linear projection  p ( Q ) = P If xc( P ) ≤ poly ( n ) ⇒ ( Q, p ) compact formulation of P . Q p P

  10. b b b b Example: Parity Polytope conv { x ∈ { 0 , 1 } n | # ones in x is odd } P = (0 , 1 , 1) (1 , 1 , 1) (1 , 0 , 1) (0 , 0 , 1) (0 , 1 , 0) (1 , 1 , 0) (0 , 0 , 0) (1 , 0 , 0)

  11. b b b b Example: Parity Polytope conv { x ∈ { 0 , 1 } n | # ones in x is odd } P = = { 0 ≤ x ≤ 1 | x ( A ) − x ([ n ] \ A ) ≤ | A | − 1 ∀ A ⊆ [ n ] : | A | even } (0 , 1 , 1) (1 , 1 , 1) (1 , 0 , 1) (0 , 0 , 1) (0 , 1 , 0) (1 , 1 , 0) (0 , 0 , 0) (1 , 0 , 0)

  12. b b b b Example: Parity Polytope conv { x ∈ { 0 , 1 } n | # ones in x is odd } P = = { 0 ≤ x ≤ 1 | x ( A ) − x ([ n ] \ A ) ≤ | A | − 1 ∀ A ⊆ [ n ] : | A | even } (0 , 1 , 1) (1 , 1 , 1) k = 3 k = 1 1 T z k (1 , 0 , 1) (0 , 0 , 1) = k ( k odd) 0 ≤ z k ≤ 1 (0 , 1 , 0) (1 , 1 , 0) (0 , 0 , 0) (1 , 0 , 0)

  13. b b b b Example: Parity Polytope conv { x ∈ { 0 , 1 } n | # ones in x is odd } P = = { 0 ≤ x ≤ 1 | x ( A ) − x ([ n ] \ A ) ≤ | A | − 1 ∀ A ⊆ [ n ] : | A | even } (0 , 1 , 1) (1 , 1 , 1) � k = 3 z k x = k odd k = 1 1 T z k (1 , 0 , 1) (0 , 0 , 1) = k · λ k ( k odd) 0 ≤ z k ≤ 1 · λ k (0 , 1 , 0) (1 , 1 , 0) 1 T λ = 1 λ ≥ 0 (0 , 0 , 0) (1 , 0 , 0)

  14. What’s known? Compact formulations: ◮ Perfect Matching in planar graphs [Barahona ’93] ◮ Perfect Matching in bounded genus graphs [Gerards ’91] ◮ O ( n log n )-size for Permutahedron [Goemans ’10] ( → tight ) ◮ n O (1 /ε ) -size ε -apx for Knapsack Polytope [Bienstock ’08] ◮ . . .

  15. What’s known? Compact formulations: ◮ Perfect Matching in planar graphs [Barahona ’93] ◮ Perfect Matching in bounded genus graphs [Gerards ’91] ◮ O ( n log n )-size for Permutahedron [Goemans ’10] ( → tight ) ◮ n O (1 /ε ) -size ε -apx for Knapsack Polytope [Bienstock ’08] ◮ . . . Theorem (Yannakakis) No symmetric compact formulation for TSP Polytope and Perfect Matching Polytope .

  16. What’s known? Compact formulations: ◮ Perfect Matching in planar graphs [Barahona ’93] ◮ Perfect Matching in bounded genus graphs [Gerards ’91] ◮ O ( n log n )-size for Permutahedron [Goemans ’10] ( → tight ) ◮ n O (1 /ε ) -size ε -apx for Knapsack Polytope [Bienstock ’08] ◮ . . . Theorem (Yannakakis) No symmetric compact formulation for TSP Polytope and Perfect Matching Polytope . Theorem (Kaibel, Pashkovich & Theis ’10) Compact formulation for log n size matchings, but no symmetric one.

  17. 1st Carg` ese Workshop on Combinatorial Optim.

  18. 1st Carg` ese Workshop on Combinatorial Optim.

  19. 1st Carg` ese Workshop on Combinatorial Optim.

  20. 1st Carg` ese Workshop on Combinatorial Optim.

  21. 1st Carg` ese Workshop on Combinatorial Optim. Open problem I Does the matching polytope have a compact formulation?

  22. 1st Carg` ese Workshop on Combinatorial Optim. Open problem I ! a e d Does the matching polytope i o N have a compact formulation?

  23. 1st Carg` ese Workshop on Combinatorial Optim. Open problem I ! a e d Does the matching polytope i o N have a compact formulation?

  24. 1st Carg` ese Workshop on Combinatorial Optim. Open problem I ! a e d Does the matching polytope i o N have a compact formulation? Open problem II (V. Kaibel) Is there any 0/1 polytope without a compact formulation?

  25. 1st Carg` ese Workshop on Combinatorial Optim. Open problem I ! a e d Does the matching polytope i o N have a compact formulation? Open problem II (V. Kaibel) ! s Is there any 0/1 polytope without e Y a compact formulation? Theorem For every n there exists X ⊆ { 0 , 1 } n s.t. xc(conv( X )) ≥ 2 n/ 2 · (1 − o (1)) .

  26. Proof strategy X ⊆ { 0 , 1 } n

  27. Proof strategy conv( X ) � �� �    x | ∃ y : A x + B y ≤ b   X ⊆ { 0 , 1 } n 

  28. Proof strategy injective conv( X ) � �� � map    x | ∃ y : A x + B y ≤ b   X ⊆ { 0 , 1 } n 

  29. Proof strategy injective conv( X ) � �� � map    x | ∃ y : A x + B y ≤ b   X ⊆ { 0 , 1 } n  #0 / 1 polytopes ≤ # extended form.

  30. Proof strategy injective conv( X ) � �� � map    x | ∃ y : A x + B y ≤ b   X ⊆ { 0 , 1 } n  #0 / 1 polytopes ≤ # extended form. = 2 2 n

  31. Proof strategy irrational entries injective conv( X ) � �� � map    x | ∃ y : A x + B y ≤ b   X ⊆ { 0 , 1 } n √ 2  #0 / 1 polytopes ≤ # extended form. = = 2 2 n ∞

  32. Proof strategy irrational entries injective conv( X ) � �� � map    x | ∃ y : A x + B y ≤ b   X ⊆ { 0 , 1 } n ! k √ 2 r  o w t #0 / 1 polytopes ≤ # extended form. ’ n s e = = o D 2 2 n ∞

  33. Slack-matrix Write: P = conv( { x 1 , . . . , x v } ) = { x ∈ R n | Ax ≤ b } � �� � non-redundant # vertices Slack-matrix S S ij # facets S ij = b i − A T i x j

  34. Slack-matrix Write: P = conv( { x 1 , . . . , x v } ) = { x ∈ R n | Ax ≤ b } � �� � non-redundant # vertices vertex Slack-matrix j S S ij facet i # facets S ij = b i − A T i x j

  35. Slack-matrix Write: P = conv( { x 1 , . . . , x v } ) = { x ∈ R n | Ax ≤ b } � �� � non-redundant # vertices V ≥ 0 r r Slack-matrix S U ≥ S ij # facets S ij = b i − A T i x j 0 Non-negative rank: rk + ( S ) = min { r | ∃ U ∈ R f × r ≥ 0 , V ∈ R r × v ≥ 0 : S = UV }

  36. Example for slack-matrix (1 , 1) 0 1 0 S x 1 − x 2 ≥ 0 2 x 1 ≤ 2 2 0 0 P 0 0 1 (0 , 0) x 2 ≥ 0 (1 , 0)

  37. Yannakakis’ Theorem Theorem (Yannakakis ’91) Let S be slackmatrix for P : ◮ xc ( P ) = rk + ( S ) . ◮ For any non-neg. factorization S = UV : P = { x ∈ R n | ∃ y ≥ 0 : Ax + Uy = b }

  38. Yannakakis’ Theorem Theorem (Yannakakis ’91) Let S be slackmatrix for P : ◮ xc ( P ) = rk + ( S ) . ◮ For any non-neg. factorization S = UV : P = { x ∈ R n | ∃ y ≥ 0 : Ax + Uy = b } ◮ For vertex x j : A i x j + U i V j = b i .

  39. Yannakakis’ Theorem Theorem (Yannakakis ’91) Let S be slackmatrix for P : ◮ xc ( P ) = rk + ( S ) . ◮ For any non-neg. factorization S = UV : P = { x ∈ R n | ∃ y ≥ 0 : Ax + Uy = b } ◮ For vertex x j : A i x j + U i V j = b i . ◮ A i x > b i = ⇒ A i x + U i y > b i . ���� ≥ 0

  40. Yannakakis’ Theorem Theorem (Yannakakis ’91) Let S be slackmatrix for P : ◮ xc ( P ) = rk + ( S ) . ◮ For any non-neg. factorization S = UV : P = { x ∈ R n | ∃ y ≥ 0 : Ax + Uy = b } ◮ For vertex x j : A i x j + U i V j = b i . ◮ A i x > b i = ⇒ A i x + U i y > b i . ���� ≥ 0 ◮ “ ≥ ” follows from an application of duality.

  41. Controlling the coefficients ◮ Fix X ⊆ { 0 , 1 } n , P := conv( X ) = { x ∈ R n | Ax ≤ b } and Slack-matrix S = UV Valid assumption: ◮ A, b integral with � A � ∞ , � b � ∞ ≤ 2 n log(2 n )

  42. Controlling the coefficients ◮ Fix X ⊆ { 0 , 1 } n , P := conv( X ) = { x ∈ R n | Ax ≤ b } and Slack-matrix S = UV Valid assumption: ◮ A, b integral with � A � ∞ , � b � ∞ ≤ 2 n log(2 n ) ◮ xc( P ) ≤ 2 n .

  43. Controlling the coefficients ◮ Fix X ⊆ { 0 , 1 } n , P := conv( X ) = { x ∈ R n | Ax ≤ b } and Slack-matrix S = UV Valid assumption: ◮ A, b integral with � A � ∞ , � b � ∞ ≤ 2 n log(2 n ) ◮ xc( P ) ≤ 2 n . ◮ | S ij | = | b i − A i x j | ≤ ( n + 1) · 2 n log(2 n ) ≤ 2 n 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend