gsoc 2016 exponential integrators
play

GSoC 2016: Exponential Integrators Chiara Segala Mentor: Prof. Marco - PowerPoint PPT Presentation

GSoC 2016: Exponential Integrators Octave Conference 2017 March 21, 2017 GSoC 2016: Exponential Integrators Chiara Segala Mentor: Prof. Marco Caliari GSoC 2016: Exponential Integrators Outline Exponential Integrators Matrix functions


  1. GSoC 2016: Exponential Integrators Octave Conference 2017 March 21, 2017 GSoC 2016: Exponential Integrators Chiara Segala Mentor: Prof. Marco Caliari

  2. GSoC 2016: Exponential Integrators Outline Exponential Integrators Matrix functions Implementation of solvers Numerical experiments

  3. GSoC 2016: Exponential Integrators Exponential Integrators 1 Exponential Integrators 2 Matrix functions 3 Implementation of solvers 4 Numerical experiments

  4. GSoC 2016: Exponential Integrators Exponential Integrators Exponential Integrators Parabolic problem u ′ ( t ) + Au ( t ) = f ( t ) , u ( t 0 ) = u 0

  5. GSoC 2016: Exponential Integrators Exponential Integrators Exponential Integrators Parabolic problem u ′ ( t ) + Au ( t ) = f ( t ) , u ( t 0 ) = u 0 Solution (variation of constants formula) � h n u ( t n + 1 ) = e − h n A u ( t n ) + e − ( h n − τ ) A f ( t n + τ ) d τ 0

  6. GSoC 2016: Exponential Integrators Exponential Integrators Exponential Integrators Parabolic problem u ′ ( t ) + Au ( t ) = f ( t ) , u ( t 0 ) = u 0 Solution (variation of constants formula) � h n u ( t n + 1 ) = e − h n A u ( t n ) + e − ( h n − τ ) A f ( t n + τ ) d τ 0 First numerical scheme (exponential quadrature rule) � s u n + 1 = e − h n A u n + h n b i ( − h n A ) f ( t n + c i h n ) i = 1 weights b i ( z ) can be expressed as linear combinations of the functions � 1 θ k − 1 e ( 1 − θ ) z ϕ k ( z ) = ( k − 1 )! d θ, k ≥ 1 . 0 ϕ k + 1 ( z ) = ϕ k ( z ) − ϕ k ( 0 ) ϕ k ( 0 ) = 1 ϕ 0 ( z ) = e z , k ! , z

  7. GSoC 2016: Exponential Integrators Exponential Integrators Example s = 1 u n + 1 = e − h n A u n + h n ϕ 1 ( − h n A ) f ( t n + c 1 h n ) = u n + h n ϕ 1 ( − h n A )( f ( t n + c 1 h n ) − Au n )

  8. GSoC 2016: Exponential Integrators Exponential Integrators Example s = 1 u n + 1 = e − h n A u n + h n ϕ 1 ( − h n A ) f ( t n + c 1 h n ) = u n + h n ϕ 1 ( − h n A )( f ( t n + c 1 h n ) − Au n ) Exponential Euler method for c 1 = 0 Butcher tableau 0 ϕ 1 Exponential midpoint rule for c 1 = 1 2

  9. GSoC 2016: Exponential Integrators Exponential Integrators Exponential Runge-Kutta methods Semilinear problem u ′ ( t ) = F ( t , u ) = Au ( t ) + g ( t , u ( t )) , u ( t 0 ) = u 0

  10. GSoC 2016: Exponential Integrators Exponential Integrators Exponential Runge-Kutta methods Semilinear problem u ′ ( t ) = F ( t , u ) = Au ( t ) + g ( t , u ( t )) , u ( t 0 ) = u 0 Numerical Exponential Runge-Kutta scheme � s u n + 1 = u n + h n b i ( h n A )( G ni + Au n ) i = 1 s � U ni = u n + h n a ij ( h n A )( G nj + Au n ) j = 1 G nj = g ( t n + c j h n , U nj )

  11. GSoC 2016: Exponential Integrators Exponential Integrators Exponential Runge-Kutta methods Semilinear problem u ′ ( t ) = F ( t , u ) = Au ( t ) + g ( t , u ( t )) , u ( t 0 ) = u 0 Numerical Exponential Runge-Kutta scheme � s u n + 1 = u n + h n b i ( h n A )( G ni + Au n ) i = 1 s � U ni = u n + h n a ij ( h n A )( G nj + Au n ) j = 1 G nj = g ( t n + c j h n , U nj ) Reformulation s � u n + 1 = u n + h n ϕ 1 ( h n A ) F ( t n , u n ) + h n b i ( h n A ) D ni i = 2 i − 1 � U ni = u n + h n c i ϕ 1 ( c i h n A ) F ( t n , u n ) + h n a ij ( h n A ) D nj j = 2 D nj = g ( t n + c j h n , U nj ) − g ( t n , u n )

  12. GSoC 2016: Exponential Integrators Exponential Integrators Exponential Rosenbrock methods u ′ ( t ) = F ( t , u ) , u ( t 0 ) = u 0

  13. GSoC 2016: Exponential Integrators Exponential Integrators Exponential Rosenbrock methods u ′ ( t ) = F ( t , u ) , u ( t 0 ) = u 0 Numerical Exponential Rosenbrock scheme s � u n + 1 = u n + h n ϕ 1 ( h n J n ) F ( t n , u n ) + h 2 n ϕ 2 ( h n J n ) v n + h n b i ( h n J n ) D ni i = 2 i − 1 � U ni = u n + h n c i ϕ 1 ( c i h n J n ) F ( t n , u n ) + h 2 n c 2 i ϕ 2 ( c i h n J n ) v n + h n a ij ( h n J n ) D nj j = 2

  14. GSoC 2016: Exponential Integrators Exponential Integrators Exponential Rosenbrock methods u ′ ( t ) = F ( t , u ) , u ( t 0 ) = u 0 Numerical Exponential Rosenbrock scheme s � u n + 1 = u n + h n ϕ 1 ( h n J n ) F ( t n , u n ) + h 2 n ϕ 2 ( h n J n ) v n + h n b i ( h n J n ) D ni i = 2 i − 1 � U ni = u n + h n c i ϕ 1 ( c i h n J n ) F ( t n , u n ) + h 2 n c 2 i ϕ 2 ( c i h n J n ) v n + h n a ij ( h n J n ) D nj j = 2 where J n = ∂ F ∂ u ( t n , u n ) v n = ∂ F ∂ t ( t n , u n ) g n ( t , u ) = F ( t , u ) − J n u − v n t D nj = g n ( t n + c j h n , U nj ) − g n ( t n , u n )

  15. GSoC 2016: Exponential Integrators Matrix functions 1 Exponential Integrators 2 Matrix functions 3 Implementation of solvers 4 Numerical experiments

  16. GSoC 2016: Exponential Integrators Matrix functions ϕ -functions � 1 θ k − 1 e ( 1 − θ ) z ϕ k ( z ) = ( k − 1 )! d θ, k ≥ 1 . 0 ϕ k + 1 ( z ) = ϕ k ( z ) − ϕ k ( 0 ) ϕ k ( 0 ) = 1 ϕ 0 ( z ) = e z , k ! , z

  17. GSoC 2016: Exponential Integrators Matrix functions ϕ -functions � 1 θ k − 1 e ( 1 − θ ) z ϕ k ( z ) = ( k − 1 )! d θ, k ≥ 1 . 0 ϕ k + 1 ( z ) = ϕ k ( z ) − ϕ k ( 0 ) ϕ k ( 0 ) = 1 ϕ 0 ( z ) = e z , k ! , z ϕ -functions code: scaling and squaring + Padé approximation

  18. GSoC 2016: Exponential Integrators Matrix functions Accuracy ϕ k ( ± 10 ) phikm( ± 10) phipade( ± 10,k) ϕ 1 ( 10 ) 2202.54657948068 2202.54657962449 ϕ 2 ( 10 ) 220.154657948068 220.154657962442 ϕ 3 ( 10 ) 21.9654657948068 21.9654657961828 ϕ 4 ( 10 ) 2.17987991281401 2.17987991294347 ϕ 1 ( − 10 ) 0.0999954600070237 0.0999954600070233 ϕ 2 ( − 10 ) 0.0900004539992977 0.0900004539992175 ϕ 3 ( − 10 ) 0.0409999546000702 0.0409999546000398 ϕ 4 ( − 10 ) 0.0125666712066596 0.0125666712066530

  19. GSoC 2016: Exponential Integrators Matrix functions Augmented matrix Theorem (see Al-Mohy and Higham, 2011, Th. 2.1) Let A ∈ C n × n , W = [ w 1 , w 2 , . . . , w p ] ∈ C n × p , τ ∈ C , and � A � � 0 � W I p − 1 � ∈ C ( n + p ) × ( n + p ) , ∈ C p × p , A = J = 0 J 0 0 Then for X = ϕ l ( τ � A ) with l ≥ 0 we have j � τ k ϕ l + k ( τ A ) w j − k + 1 , X ( 1 : n , n + j ) = j = 1 : p . k = 1

  20. GSoC 2016: Exponential Integrators Matrix functions Augmented matrix for exponential integrators W (: , p − k + 1 ) = u k , k = 1 : p , l = 0 , τ = t − t 0 � � e ( t − t 0 ) A A = X 12 A ) = e ( t − t 0 ) � X = ϕ 0 (( t − t 0 ) � e ( t − t 0 ) J 0 p � ϕ k (( t − t 0 ) A )( t − t 0 ) k u k X ( 1 : n , n + p ) = k = 1

  21. GSoC 2016: Exponential Integrators Matrix functions Augmented matrix for exponential integrators W (: , p − k + 1 ) = u k , k = 1 : p , l = 0 , τ = t − t 0 � � e ( t − t 0 ) A A = X 12 A ) = e ( t − t 0 ) � X = ϕ 0 (( t − t 0 ) � e ( t − t 0 ) J 0 p � ϕ k (( t − t 0 ) A )( t − t 0 ) k u k X ( 1 : n , n + p ) = k = 1 p � u ( t ) = e ( t − t 0 ) A u 0 + ϕ k (( t − t 0 ) A )( t − t 0 ) k u k ˆ k = 1 = e ( t − t 0 ) A u 0 + X ( 1 : n , n + p ) A � u 0 � 0 ] e ( t − t 0 ) � = [ I n e p

  22. GSoC 2016: Exponential Integrators Matrix functions Augmented matrix for exponential integrators W (: , p − k + 1 ) = u k , k = 1 : p , l = 0 , τ = t − t 0 � � e ( t − t 0 ) A A = X 12 A ) = e ( t − t 0 ) � X = ϕ 0 (( t − t 0 ) � e ( t − t 0 ) J 0 p � ϕ k (( t − t 0 ) A )( t − t 0 ) k u k X ( 1 : n , n + p ) = k = 1 p � u ( t ) = e ( t − t 0 ) A u 0 + ϕ k (( t − t 0 ) A )( t − t 0 ) k u k ˆ k = 1 = e ( t − t 0 ) A u 0 + X ( 1 : n , n + p ) A � u 0 � 0 ] e ( t − t 0 ) � = [ I n e p � � A � �� � u 0 η W η = 2 −⌈ log 2 ( � W � 1 ) ⌉ u ( t ) = [ I n ˆ 0 ] exp ( t − t 0 ) , η − 1 e p 0 J

  23. GSoC 2016: Exponential Integrators Matrix functions Double augmented matrix Theorem (Double augmented matrix) Let A ∈ C n × n , W = [ w 1 , w 2 , . . . , w p ] ∈ C n × p , V = [ v 1 , v 2 , . . . , v q ] ∈ C n × q , τ ∈ C , and � A � W V � � ∈ C ( n + p + q ) × ( n + p + q ) , J ∈ C p × p , K ∈ C q × q . A = 0 J 0 0 0 K Then for X = ϕ l ( τ � � A ) with l ≥ 0 we have j � τ k ϕ l + k ( τ A ) w j − k + 1 , X ( 1 : n , n + j ) = j = 1 : p . k = 1 i − p � τ k ϕ l + k ( τ A ) v i − k + 1 − p , X ( 1 : n , n + i ) = i = ( p + 1 ) : ( p + q ) . k = 1

  24. GSoC 2016: Exponential Integrators Matrix functions expmv e A B ≈ ( T m ( s − 1 A )) s B m = ⇒ select_taylor_degree

  25. GSoC 2016: Exponential Integrators Matrix functions expmv e A B ≈ ( T m ( s − 1 A )) s B m = ⇒ select_taylor_degree function [f] = expmv (A, b) . . . M = select_taylor_degree (A, b); . . .

  26. GSoC 2016: Exponential Integrators Matrix functions expmv e A B ≈ ( T m ( s − 1 A )) s B m = ⇒ select_taylor_degree function [f] = expmv (A, b) . . . M = select_taylor_degree (A, b); . . . M = select_taylor_degree (A, b); f = expmv (A, b, M);

  27. GSoC 2016: Exponential Integrators Matrix functions expmv e A B ≈ ( T m ( s − 1 A )) s B m = ⇒ select_taylor_degree function [f] = expmv (A, b) . . . M = select_taylor_degree (A, b); . . . M = select_taylor_degree (A, b); f = expmv (A, b, M); ⇒ � A k � 1 select_taylor_degree =

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend