polytopes lattice points and a problem of frobenius
play

Polytopes, lattice points, and a problem of Frobenius Matthias Beck - PDF document

Polytopes, lattice points, and a problem of Frobenius Matthias Beck SUNY Binghamton Sinai Robins Temple University www.math.binghamton.edu/matthias If you think its simple, then you have mis- understood the problem Bjarne Strustrup


  1. Polytopes, lattice points, and a problem of Frobenius Matthias Beck SUNY Binghamton Sinai Robins Temple University www.math.binghamton.edu/matthias

  2. “If you think it’s simple, then you have mis- understood the problem” Bjarne Strustrup (lecture at Temple University, 11/25/97) 2

  3. Frobenius problem: Given relatively prime positive integers a 1 , . . . , a d , we call an in- teger n representable if there exist nonneg- ative integers m 1 , . . . , m d such that n = m 1 a 1 + · · · + m d a d . Find the largest integer (the Frobenius num- ber g ( a 1 , . . . , a d ) ) which is not representable. Consider the partition function ( m 1 , . . . , m d ) ∈ Z d � � ≥ 0 : p { a 1 ,...,a d } ( n ) := # m 1 a 1 + · · · + m d a d = n Frobenius problem: find the largest value for n such that p { a 1 ,...,a d } ( n ) = 0 . Geometri- cally, this partition function enumerates in- teger (“lattice”) points on the n -dilate of the polytope ( x 1 , . . . , x d ) ∈ R d : � � . x j ≥ 0 , x 1 a 1 + · · · + x d a d = 1 3

  4. Some known results: • (Sylvester, 1884) g ( a 1 , a 2 ) = a 1 a 2 − a 1 − a 2 • (Erd¨ os, 1940’s, . . . ) n d − 1 � n d − 2 � p { a 1 ,...,a d } ( n ) = a 1 ··· a d ( d − 1)! + O • (Stanley, Wilf, 1970’s) n p { a 1 ,a 2 } ( n ) = a 1 a 2 + f ( n ) where f ( n ) is periodic in n with period a 1 a 2 . 4

  5. Theorem (Tripathi, B-R) � a − 1 � � a − 1 � 2 n 1 n n p { a 1 ,a 2 } ( n ) = a 1 a 2 − − +1 . a 1 a 2 Here { x } = x − ⌊ x ⌋ denotes the fractional part of x , a − 1 1 a 1 ≡ 1 (mod a 2 ) , and a − 1 2 a 2 ≡ 1 (mod a 1 ) . “The proof is left as an exercise.” 5

  6. Corollary (Sylvester) g ( a, b ) = ab − a − b Proof. p { a,b } ( ab − a − b + n ) = ab − a − b + n ab � � � � b − 1 ( ab − a − b + n ) a − 1 ( ab − a − b + n ) − − + 1 a b � � � � = 2 − 1 b − 1 − 1+ n − 1+ n a + n ab − − a b � � − 1 = 1 − 1 If n = 0 use a to obtain a p { a,b } ( ab − a − b ) = � � � � 2 − 1 b − 1 1 − 1 1 − 1 a − − = 0 . a b ≤ 1 − 1 � m � If n > 0 note that a and hence a p { a,b } ( ab − a − b + n ) ≥ � � � � 2 − 1 b − 1 a + n 1 − 1 1 − 1 = n ab − − ab > 0 . a b 6

  7. Corollary (Sylvester) Exactly half of the in- tegers between 1 and ( a − 1)( b − 1) are rep- resentable. Proof. If n ∈ [1 , ab − 1] is not a multiple of a or b then � � b − 1 ( ab − n ) p { a,b } ( ab − n ) = ab − n − a ab � � a − 1 ( ab − n ) − + 1 b − b − 1 n − a − 1 n � � � � = 2 − n ab − − a b ( ⋆ ) b − 1 n a − 1 n � � � � = − n ab + + a b = 1 − p { a,b } ( n ) . ( ⋆ ) follows from {− x } = 1 − { x } if x �∈ Z . Hence for n between 1 and ab − 1 and not divisible by a or b , exactly one of n and ab − n is not representable. There are ab − a − b + 1 = ( a − 1)( b − 1) such integers. 7

  8. Extension: we call an integer n k -representable if p { a 1 ,...,a d } ( n ) = k , that is, n can be repre- sented in exactly k ways. Define g k ( a 1 , . . . , a d ) to be the largest k -representable integer. Theorem (B-R) g k ( a, b ) = ( k +1) ab − a − b This follows directly from Lemma p { a,b } ( n + ab ) = p { a,b } ( n ) + 1 Proof. � � b − 1 ( n + ab ) p { a,b } ( n + ab ) = n + ab − a ab � � a − 1 ( n + ab ) − + 1 b b − 1 n a − 1 n � � � � = n ab + 2 − − a b = p { a,b } ( n ) + 1 8

  9. More exercises: • Given k ≥ 2 , the smallest k -representable integer is ab ( k − 1) . • Given k ≥ 2 , the smallest interval con- taining all k -representable integers is [ g k − 2 ( a, b ) + a + b , g k ( a, b ) ] . • There are ab − 1 uniquely representable integers. Given k ≥ 2 , there are exactly ab k -representable integers. • Extend all of this to d > 2 . 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend